IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v278y2023ics0378377423000112.html
   My bibliography  Save this article

Strong N2O uptake capacity of paddy soil under different water conditions

Author

Listed:
  • Zhong, Jinmei
  • Song, Yaqi
  • Yang, Man
  • Wang, Wei
  • Li, Zhaohua
  • Zhao, Liya
  • Li, Kun
  • Wang, Ling

Abstract

Paddy field is a major global land use form. However, frequent fluctuations in soil water content make paddy fields important N2O emission sources. The contribution of N2O uptake to the reduction in net N2O emission from paddy soil varies with water content. Nevertheless, little is known about the impact of physicochemical factors, microbial regulatory mechanisms, and water content on N2O uptake in paddy soil. We designed and conducted a microcosm experiment controlled for gravimetric water content and applied exogenous N2O to three paddy soils differing in texture and parent material. During the incubation period, we monitored the headspace N2O content, measured the ammonia-N, nitrate-N, and dissolved organic carbon content, and analyzed the number of nosZ-containing microorganisms. For all three paddy soils, the total N2O uptake was > 50.71% at 20% gravimetric water content. The total N2O uptake increased exponentially (R2 ≥ 0.96) with water content throughout the incubation period. The highest N2O uptake range (73.94–78.44%) was detected at 70% gravimetric water content. Hence, paddy soil can absorb and consume abundant N2O at different water content, and prolonging the flooding period in the field could enhance the total N2O uptake. Furthermore, N2O uptake was strongly positively correlated with dissolved organic carbon consumption and increase in nosZ gene abundance (P < 0.001). Under various water content, the average N2O uptake in silty clay loam soil was 385.20 μg•kg−1 which was significantly higher than those for loam and sandy loam soils (351.98 μg•kg−1, P < 0.05). Moreover, nosZ gene abundance was substantially higher in SCL than the other soils. Future research should endeavor to determine the mechanisms by which NH4+-N content, pH, and organic carbon content affect N2O uptake in different types of paddy soil.

Suggested Citation

  • Zhong, Jinmei & Song, Yaqi & Yang, Man & Wang, Wei & Li, Zhaohua & Zhao, Liya & Li, Kun & Wang, Ling, 2023. "Strong N2O uptake capacity of paddy soil under different water conditions," Agricultural Water Management, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:agiwat:v:278:y:2023:i:c:s0378377423000112
    DOI: 10.1016/j.agwat.2023.108146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423000112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanqin Tian & Rongting Xu & Josep G. Canadell & Rona L. Thompson & Wilfried Winiwarter & Parvadha Suntharalingam & Eric A. Davidson & Philippe Ciais & Robert B. Jackson & Greet Janssens-Maenhout & Mic, 2020. "A comprehensive quantification of global nitrous oxide sources and sinks," Nature, Nature, vol. 586(7828), pages 248-256, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ya Li & Hanqin Tian & Yuanzhi Yao & Hao Shi & Zihao Bian & Yu Shi & Siyuan Wang & Taylor Maavara & Ronny Lauerwald & Shufen Pan, 2024. "Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    3. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.
    4. Florian Kapmeier, 2020. "Reflections on developing a simulation model on sustainable and healthy diets for decision makers: Comment on the paper by Kopainsky," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 928-935, November.
    5. Guofeng Wang & Pu Liu & Jinmiao Hu & Fan Zhang, 2022. "Agriculture-Induced N 2 O Emissions and Reduction Strategies in China," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    6. Yuan Wang & Zhou Pan & Yue Li & Yaling Lu & Yiming Dong & Liying Ping, 2022. "Optimization of Emission Reduction Target in the Beijing–Tianjin–Hebei Region: An Atmospheric Transfer Coefficient Matrix Perspective," IJERPH, MDPI, vol. 19(20), pages 1-14, October.
    7. Longhui Li & Yue Zhang & Tianjun Zhou & Kaicun Wang & Can Wang & Tao Wang & Linwang Yuan & Kangxin An & Chenghu Zhou & Guonian Lü, 2022. "Mitigation of China’s carbon neutrality to global warming," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Lin Shi & Xiaofei Shi & Fan Yang & Lixue Zhang, 2023. "Spatio-Temporal Difference in Agricultural Eco-Efficiency and Its Influencing Factors Based on the SBM-Tobit Models in the Yangtze River Delta, China," IJERPH, MDPI, vol. 20(6), pages 1-22, March.
    9. Mohammad Bahram & Mikk Espenberg & Jaan Pärn & Laura Lehtovirta-Morley & Sten Anslan & Kuno Kasak & Urmas Kõljalg & Jaan Liira & Martin Maddison & Mari Moora & Ülo Niinemets & Maarja Öpik & Meelis Pär, 2022. "Structure and function of the soil microbiome underlying N2O emissions from global wetlands," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. E. Harris & L. Yu & Y-P. Wang & J. Mohn & S. Henne & E. Bai & M. Barthel & M. Bauters & P. Boeckx & C. Dorich & M. Farrell & P. B. Krummel & Z. M. Loh & M. Reichstein & J. Six & M. Steinbacher & N. S., 2022. "Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Yunpeng Qiu & Yi Zhang & Kangcheng Zhang & Xinyu Xu & Yunfeng Zhao & Tongshuo Bai & Yexin Zhao & Hao Wang & Xiongjie Sheng & Sean Bloszies & Christopher J. Gillespie & Tangqing He & Yang Wang & Huaiha, 2024. "Intermediate soil acidification induces highest nitrous oxide emissions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Arejacy Antonio Silva & Mário Carvalho & João Coutinho & Ernesto Vasconcelos & David Fangueiro, 2022. "Dairy Slurry Application to Stubble-Covered Soil: A Study on Sustainable Alternatives to Minimize Gaseous Emissions," Agriculture, MDPI, vol. 12(7), pages 1-16, July.
    13. Rajeev Kumar Gupta & Arun Shankar & Bijay-Singh & Rajan Bhatt & Asma A. Al-Huqail & Manzer H. Siddiqui & Ritesh Kumar, 2022. "Precision Nitrogen Management in Bt Cotton ( Gossypium hirsutum ) Improves Seed Cotton Yield and Nitrogen Use Efficiency, and Reduces Nitrous Oxide Emissions," Sustainability, MDPI, vol. 14(4), pages 1-13, February.
    14. Shanyun Wang & Bangrui Lan & Longbin Yu & Manyi Xiao & Liping Jiang & Yu Qin & Yucheng Jin & Yuting Zhou & Gawhar Armanbek & Jingchen Ma & Manting Wang & Mike S. M. Jetten & Hanqin Tian & Guibing Zhu , 2024. "Ammonium-derived nitrous oxide is a global source in streams," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Endre Harsányi & Bashar Bashir & Gafar Almhamad & Omar Hijazi & Mona Maze & Ahmed Elbeltagi & Abdullah Alsalman & Glory O. Enaruvbe & Safwan Mohammed & Szilárd Szabó, 2021. "GHGs Emission from the Agricultural Sector within EU-28: A Multivariate Analysis Approach," Energies, MDPI, vol. 14(20), pages 1-18, October.
    16. M. E. Marushchak & J. Kerttula & K. Diáková & A. Faguet & J. Gil & G. Grosse & C. Knoblauch & N. Lashchinskiy & P. J. Martikainen & A. Morgenstern & M. Nykamb & J. G. Ronkainen & H. M. P. Siljanen & L, 2021. "Thawing Yedoma permafrost is a neglected nitrous oxide source," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    17. Ning, Zhuo & Hou, Yuke & Xu, Xia, 2024. "Optimized strategies for nitrogen fertilizer application in Populus plantations in the context of climate change mitigation," Forest Policy and Economics, Elsevier, vol. 159(C).
    18. Panpan Ji & Jianhui Chen & Ruijin Chen & Jianbao Liu & Chaoqing Yu & Fahu Chen, 2024. "Nitrogen and phosphorus trends in lake sediments of China may diverge," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Xianhui S. Wan & Hua-Xia Sheng & Li Liu & Hui Shen & Weiyi Tang & Wenbin Zou & Min N. Xu & Zhenzhen Zheng & Ehui Tan & Mingming Chen & Yao Zhang & Bess B. Ward & Shuh-Ji Kao, 2023. "Particle-associated denitrification is the primary source of N2O in oxic coastal waters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Xiayan Zhang & Jiyang Lv & Yuyang Zhang & Shouguo Li & Xian Chen & Zhipeng Sha, 2023. "A Meta-Analysis Study on the Use of Biochar to Simultaneously Mitigate Emissions of Reactive Nitrogen Gases (N 2 O and NO) from Soils," Sustainability, MDPI, vol. 15(3), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:278:y:2023:i:c:s0378377423000112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.