IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46931-3.html
   My bibliography  Save this article

Intermediate soil acidification induces highest nitrous oxide emissions

Author

Listed:
  • Yunpeng Qiu

    (Nanjing Agricultural University)

  • Yi Zhang

    (Nanjing Agricultural University)

  • Kangcheng Zhang

    (Nanjing Agricultural University)

  • Xinyu Xu

    (Nanjing Agricultural University)

  • Yunfeng Zhao

    (Nanjing Agricultural University)

  • Tongshuo Bai

    (Nanjing Agricultural University)

  • Yexin Zhao

    (Nanjing Agricultural University)

  • Hao Wang

    (Nanjing Agricultural University)

  • Xiongjie Sheng

    (Nanjing Agricultural University
    Yunnan University)

  • Sean Bloszies

    (North Carolina State University)

  • Christopher J. Gillespie

    (North Carolina State University)

  • Tangqing He

    (Nanjing Agricultural University)

  • Yang Wang

    (Institute of Botany, Chinese Academy of Sciences)

  • Huaihai Chen

    (School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen)

  • Lijin Guo

    (College of Resources and Environment, Fujian Agriculture and Forestry University)

  • He Song

    (Anhui Agricultural University)

  • Chenglong Ye

    (Nanjing Agricultural University)

  • Yi Wang

    (Institute of Earth Environment, Chinese Academy of Sciences)

  • Alex Woodley

    (North Carolina State University)

  • Jingheng Guo

    (College of Resources and Environmental Sciences, China Agricultural University)

  • Lei Cheng

    (College of Life Sciences, Zhejiang University)

  • Yongfei Bai

    (Institute of Botany, Chinese Academy of Sciences)

  • Yongguan Zhu

    (Institute of Urban Environment, Chinese Academy of Sciences
    Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
    CAS Haixi Industrial Technology Innovation Center in Beilun)

  • Sara Hallin

    (Swedish University of Agricultural Sciences)

  • Mary K. Firestone

    (Policy, and Management, University of California, Berkeley
    Lawrence Berkeley National Laboratory)

  • Shuijin Hu

    (North Carolina State University)

Abstract

Global potent greenhouse gas nitrous oxide (N2O) emissions from soil are accelerating, with increases in the proportion of reactive nitrogen emitted as N2O, i.e., N2O emission factor (EF). Yet, the primary controls and underlying mechanisms of EFs remain unresolved. Based on two independent but complementary global syntheses, and three field studies determining effects of acidity on N2O EFs and soil denitrifying microorganisms, we show that soil pH predominantly controls N2O EFs and emissions by affecting the denitrifier community composition. Analysis of 5438 paired data points of N2O emission fluxes revealed a hump-shaped relationship between soil pH and EFs, with the highest EFs occurring in moderately acidic soils that favored N2O-producing over N2O-consuming microorganisms, and induced high N2O emissions. Our results illustrate that soil pH has a unimodal relationship with soil denitrifiers and EFs, and the net N2O emission depends on both the N2O/(N2O + N2) ratio and overall denitrification rate. These findings can inform strategies to predict and mitigate soil N2O emissions under future nitrogen input scenarios.

Suggested Citation

  • Yunpeng Qiu & Yi Zhang & Kangcheng Zhang & Xinyu Xu & Yunfeng Zhao & Tongshuo Bai & Yexin Zhao & Hao Wang & Xiongjie Sheng & Sean Bloszies & Christopher J. Gillespie & Tangqing He & Yang Wang & Huaiha, 2024. "Intermediate soil acidification induces highest nitrous oxide emissions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46931-3
    DOI: 10.1038/s41467-024-46931-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46931-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46931-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. A. Montzka & E. J. Dlugokencky & J. H. Butler, 2011. "Non-CO2 greenhouse gases and climate change," Nature, Nature, vol. 476(7358), pages 43-50, August.
    2. Hanqin Tian & Rongting Xu & Josep G. Canadell & Rona L. Thompson & Wilfried Winiwarter & Parvadha Suntharalingam & Eric A. Davidson & Philippe Ciais & Robert B. Jackson & Greet Janssens-Maenhout & Mic, 2020. "A comprehensive quantification of global nitrous oxide sources and sinks," Nature, Nature, vol. 586(7828), pages 248-256, October.
    3. Sharon J. Hall & Pamela A. Matson, 1999. "Nitrogen oxide emissions after nitrogen additions in tropical forests," Nature, Nature, vol. 400(6740), pages 152-155, July.
    4. Jinfeng Chang & Philippe Ciais & Thomas Gasser & Pete Smith & Mario Herrero & Petr Havlík & Michael Obersteiner & Bertrand Guenet & Daniel S. Goll & Wei Li & Victoria Naipal & Shushi Peng & Chunjing Q, 2021. "Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. E. W. Slessarev & Y. Lin & N. L. Bingham & J. E. Johnson & Y. Dai & J. P. Schimel & O. A. Chadwick, 2016. "Water balance creates a threshold in soil pH at the global scale," Nature, Nature, vol. 540(7634), pages 567-569, December.
    6. R. L. Thompson & L. Lassaletta & P. K. Patra & C. Wilson & K. C. Wells & A. Gressent & E. N. Koffi & M. P. Chipperfield & W. Winiwarter & E. A. Davidson & H. Tian & J. G. Canadell, 2019. "Acceleration of global N2O emissions seen from two decades of atmospheric inversion," Nature Climate Change, Nature, vol. 9(12), pages 993-998, December.
    7. John M. Stark & Stephen C. Hart, 1997. "High rates of nitrification and nitrate turnover in undisturbed coniferous forests," Nature, Nature, vol. 385(6611), pages 61-64, January.
    8. Christopher M. Jones & Ayme Spor & Fiona P. Brennan & Marie-Christine Breuil & David Bru & Philippe Lemanceau & Bryan Griffiths & Sara Hallin & Laurent Philippot, 2014. "Recently identified microbial guild mediates soil N2O sink capacity," Nature Climate Change, Nature, vol. 4(9), pages 801-805, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.
    2. E. Harris & L. Yu & Y-P. Wang & J. Mohn & S. Henne & E. Bai & M. Barthel & M. Bauters & P. Boeckx & C. Dorich & M. Farrell & P. B. Krummel & Z. M. Loh & M. Reichstein & J. Six & M. Steinbacher & N. S., 2022. "Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Louise B. Sennett & Constance A. Roco & Natalie Y. N. Lim & Joseph B. Yavitt & Peter Dörsch & Lars R. Bakken & James P. Shapleigh & Åsa Frostegård, 2024. "Determining how oxygen legacy affects trajectories of soil denitrifier community dynamics and N2O emissions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Aurélien Saghaï & Grace Pold & Christopher M. Jones & Sara Hallin, 2023. "Phyloecology of nitrate ammonifiers and their importance relative to denitrifiers in global terrestrial biomes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Duarte, Miguel & Holz, Laura I.V. & Fernandes, Celina & Ribeirinha, Paulo & Fagg, Duncan P. & Mendes, Adélio, 2024. "Modelling ammonia and nitrous oxide decomposition reactions in solid oxide fuel cells for combined energy generation and treatment of flue gas streams," Applied Energy, Elsevier, vol. 368(C).
    6. Samuel Imisi Awala & Joo-Han Gwak & Yongman Kim & Man-Young Jung & Peter F. Dunfield & Michael Wagner & Sung-Keun Rhee, 2024. "Nitrous oxide respiration in acidophilic methanotrophs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Theodora Karanisa & Alexandre Amato & Renee Richer & Sara Abdul Majid & Cynthia Skelhorn & Sami Sayadi, 2021. "Agricultural Production in Qatar’s Hot Arid Climate," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    8. Ya Li & Hanqin Tian & Yuanzhi Yao & Hao Shi & Zihao Bian & Yu Shi & Siyuan Wang & Taylor Maavara & Ronny Lauerwald & Shufen Pan, 2024. "Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    10. Cuihong Song & Jun-Jie Zhu & John L. Willis & Daniel P. Moore & Mark A. Zondlo & Zhiyong Jason Ren, 2024. "Oversimplification and misestimation of nitrous oxide emissions from wastewater treatment plants," Nature Sustainability, Nature, vol. 7(10), pages 1348-1358, October.
    11. Zhenghu Zhou & Chengjie Ren & Chuankuan Wang & Manuel Delgado-Baquerizo & Yiqi Luo & Zhongkui Luo & Zhenggang Du & Biao Zhu & Yuanhe Yang & Shuo Jiao & Fazhu Zhao & Andong Cai & Gaihe Yang & Gehong We, 2024. "Global turnover of soil mineral-associated and particulate organic carbon," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    13. Florian Kapmeier, 2020. "Reflections on developing a simulation model on sustainable and healthy diets for decision makers: Comment on the paper by Kopainsky," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 928-935, November.
    14. Guofeng Wang & Pu Liu & Jinmiao Hu & Fan Zhang, 2022. "Agriculture-Induced N 2 O Emissions and Reduction Strategies in China," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    15. Marek Borowski & Piotr Życzkowski & Jianwei Cheng & Rafał Łuczak & Klaudia Zwolińska, 2020. "The Combustion of Methane from Hard Coal Seams in Gas Engines as a Technology Leading to Reducing Greenhouse Gas Emissions—Electricity Prediction Using ANN," Energies, MDPI, vol. 13(17), pages 1-18, August.
    16. Otterbring, Tobias & Folwarczny, Michał, 2024. "Social validation, reciprocation, and sustainable orientation: Cultivating “clean†codes of conduct through social influence," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
    17. Francisco Estrada & Luis Filipe Martins & Pierre Perron, 2017. "Characterizing and attributing the warming trend in sea and land surface temperatures," Boston University - Department of Economics - Working Papers Series WP2017-009, Boston University - Department of Economics.
    18. Qiu, Xin & Jin, Jianjun & He, Rui & Mao, Jiansu, 2022. "The deviation between the willingness and behavior of farmers to adopt electricity-saving tricycles and its influencing factors in Dazu District of China," Energy Policy, Elsevier, vol. 167(C).
    19. Wei Wu & Hong-Bin Liu, 2019. "Estimation of soil pH with geochemical indices in forest soils," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-14, October.
    20. Katarzyna Wolny-Koładka & Renata Jarosz & Michał Juda & Monika Mierzwa-Hersztek, 2022. "Distinct Changes in Abundance of Culturable Microbial Community and Respiration Activities in Response to Mineral–Organic Mixture Application in Contaminated Soil," Sustainability, MDPI, vol. 14(22), pages 1-16, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46931-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.