IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v277y2023ics0378377422006655.html
   My bibliography  Save this article

Spatial scale effect of irrigation efficiency paradox based on water accounting framework in Heihe River Basin, Northwest China

Author

Listed:
  • Cai, Wenjuan
  • Jiang, Xiaohui
  • Sun, Haotian
  • Lei, Yuxin
  • Nie, Tong
  • Li, Lichan

Abstract

Improving irrigation efficiency (IE) to alleviate water shortage has been deemed viable. However, the so-called irrigation efficiency paradox (IEP) can complicate this process, where agricultural water consumption remains high despite the enhanced irrigation efficiency, particularly in arid regions. This study developed a judgment method of IEP based on a water accounting framework and the IEP definition to detect the IEP occurring across spatial scales in the middle Heihe River Basin, the second-largest inland river basin in Northwest China. Furthermore, the scale effects of the IEP were analyzed. The results showed that evaluated by evapotranspiration (ET) and transpiration (T), the scale effect occurred because IEP does not necessarily occur at the field scale but at the irrigation district scale and basin scale. Evaluated by Inflows (I) and surface water diversion and groundwater extraction (Isg), the scale effect occurred because IEP may occur at the field and the irrigation district scales but not at the basin scale. Further, the IEP was also influenced by time scales and regional agricultural characteristics. The results can be referenced for water-saving measures, avoiding the potential IEP for actual water savings in arid regions worldwide.

Suggested Citation

  • Cai, Wenjuan & Jiang, Xiaohui & Sun, Haotian & Lei, Yuxin & Nie, Tong & Li, Lichan, 2023. "Spatial scale effect of irrigation efficiency paradox based on water accounting framework in Heihe River Basin, Northwest China," Agricultural Water Management, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006655
    DOI: 10.1016/j.agwat.2022.108118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422006655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.108118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenjie Geng & Xiaohui Jiang & Yuxin Lei & Jinyan Zhang & Huan Zhao, 2021. "The Allocation of Water Resources in the Midstream of Heihe River for the “97 Water Diversion Scheme” and the “Three Red Lines”," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    2. Ismail Elhassnaoui & Zineb Moumen & Manuela TvaronaviÄ ienÄ— & Mohamed Ouarani & Mohamed Ouarani & Mohamed Ben-Daoud & Issam Serrari & Ikram Lahmidi & M.A.S. Wahba & Ahmed Bouziane & Driss Ouazar & Mo, 2021. "Management of water scarcity in arid areas: a case study (Ziz Watershed)," Insights into Regional Development, VsI Entrepreneurship and Sustainability Center, vol. 3(1), pages 80-103, March.
    3. Julio Berbel & Carlos Gutiérrez-Martín & Juan Rodríguez-Díaz & Emilio Camacho & Pilar Montesinos, 2015. "Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 663-678, February.
    4. Zhang, Ling & Ma, Qimin & Zhao, Yanbo & Wu, Xiaobo & Yu, Wenjun, 2019. "Determining the influence of irrigation efficiency improvement on water use and consumption by conceptually considering hydrological pathways," Agricultural Water Management, Elsevier, vol. 213(C), pages 674-681.
    5. Vardon, Michael & Lenzen, Manfred & Peevor, Stuart & Creaser, Mette, 2007. "Water accounting in Australia," Ecological Economics, Elsevier, vol. 61(4), pages 650-659, March.
    6. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    7. Ismail Elhassnaoui & Zineb Moumen & Manuela Tvaronavičienė & Mohamed Ouarani & Mohamed Ben-Daoud & Issam Serrari & Ikram Lahmidi & M.A.S. Wahba & Ahmed Bouziane & Driss Ouazar & Moulay Driss Hasnaoui, 2021. "Management of water scarcity in arid areas: a case study (Ziz Watershed)," Post-Print hal-03583819, HAL.
    8. Cai, Wenjuan & Jiang, Xiaohui & Sun, Haotian & He, Jiaying & Deng, Chun & Lei, Yuxin, 2022. "Temporal and spatial variation and driving factors of water consumption in the middle Heihe river basin before and after the implementation of the"97 water diversion scheme"," Agricultural Water Management, Elsevier, vol. 269(C).
    9. Huang, Qiuqiong & Wang, Jinxia & Li, Yumin, 2017. "Do water saving technologies save water? Empirical evidence from North China," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 1-16.
    10. Berbel, Julio & Gutierrez-Marín, Carlos & Expósito, Alfonso, 2018. "Microeconomic analysis of irrigation efficiency improvement in water use and water consumption," Agricultural Water Management, Elsevier, vol. 203(C), pages 423-429.
    11. Guangwei Huang, 2015. "From Water-Constrained to Water-Driven Sustainable Development—A Case of Water Policy Impact Evaluation," Sustainability, MDPI, vol. 7(7), pages 1-15, July.
    12. Xu, Hang & Song, Jianfeng, 2022. "Drivers of the irrigation water rebound effect: A case study of Hetao irrigation district in Yellow River basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    13. Louis Sears & Joseph Caparelli & Clouse Lee & Devon Pan & Gillian Strandberg & Linh Vuu & C. -Y. Cynthia Lin Lawell, 2018. "Jevons’ Paradox and Efficient Irrigation Technology," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lankford, Bruce A., 2023. "Resolving the paradoxes of irrigation efficiency: Irrigated systems accounting analyses depletion-based water conservation for reallocation," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei, Rilong & Xie, Mengyuan & Wei, Xin & Ma, Ding, 2021. "Has the water rights system reform restrained the water rebound effect? Empirical analysis from China's agricultural sector," Agricultural Water Management, Elsevier, vol. 246(C).
    2. Zhang, Ling & Ma, Qimin & Zhao, Yanbo & Wu, Xiaobo & Yu, Wenjun, 2019. "Determining the influence of irrigation efficiency improvement on water use and consumption by conceptually considering hydrological pathways," Agricultural Water Management, Elsevier, vol. 213(C), pages 674-681.
    3. Berbel, Julio & Gutierrez-Marín, Carlos & Expósito, Alfonso, 2018. "Microeconomic analysis of irrigation efficiency improvement in water use and water consumption," Agricultural Water Management, Elsevier, vol. 203(C), pages 423-429.
    4. Borrego-Marín, María M. & Berbel, J., 2019. "Cost-benefit analysis of irrigation modernization in Guadalquivir River Basin," Agricultural Water Management, Elsevier, vol. 212(C), pages 416-423.
    5. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    6. Qian Chen & Jaume Freire González & Donglan Zha, 2023. "The Gap between Expectations and Reality: Assessing the Water Rebound Effect in Chinese Agriculture," Working Papers 1415, Barcelona School of Economics.
    7. Drew, Mark & Crase, Lin, 2023. "‘More Crop per Drop’ and water use efficiency in the National Water Policy of Pakistan," Agricultural Water Management, Elsevier, vol. 288(C).
    8. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    9. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    10. Aijun Guo & Rong Zhang & Xiaoyu Song & Fanglei Zhong & Daiwei Jiang & Yuan Song, 2021. "Predicting the Water Rebound Effect in China under the Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 18(3), pages 1-24, February.
    11. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).
    12. Xu, Hang & Song, Jianfeng, 2022. "Drivers of the irrigation water rebound effect: A case study of Hetao irrigation district in Yellow River basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    13. Cai, Wenjuan & Jiang, Xiaohui & Sun, Haotian & He, Jiaying & Deng, Chun & Lei, Yuxin, 2022. "Temporal and spatial variation and driving factors of water consumption in the middle Heihe river basin before and after the implementation of the"97 water diversion scheme"," Agricultural Water Management, Elsevier, vol. 269(C).
    14. Danso, G.K. & Jeffrey, S.R. & Dridi, C. & Veeman, T., 2021. "Modeling irrigation technology adoption and crop choices: Gains from water trading with farmer heterogeneity in Southern Alberta, Canada," Agricultural Water Management, Elsevier, vol. 253(C).
    15. Whittemore, Donald O. & Butler, James J. & Bohling, Geoffrey C. & Wilson, Blake B., 2023. "Are we saving water? Simple methods for assessing the effectiveness of groundwater conservation measures," Agricultural Water Management, Elsevier, vol. 287(C).
    16. Nadine Bachmann & Shailesh Tripathi & Manuel Brunner & Herbert Jodlbauer, 2022. "The Contribution of Data-Driven Technologies in Achieving the Sustainable Development Goals," Sustainability, MDPI, vol. 14(5), pages 1-33, February.
    17. Carles Sanchis-Ibor & Mar Ortega-Reig & Amanda Guillem-García & Juan M. Carricondo & Juan Manzano-Juárez & Marta García-Mollá & Álvaro Royuela, 2021. "Irrigation Post-Modernization. Farmers Envisioning Irrigation Policy in the Region of Valencia (Spain)," Agriculture, MDPI, vol. 11(4), pages 1-21, April.
    18. Xu, Hang & Yang, Rui, 2022. "Does agricultural water conservation policy necessarily reduce agricultural water extraction? Evidence from China," Agricultural Water Management, Elsevier, vol. 274(C).
    19. Catherine Laroche-Dupraz & Angela Cheptea, 2021. "Is irrigation driven by the price of internationally traded agricultural products?," Post-Print hal-03227465, HAL.
    20. Wang, Yanyun & Long, Aihua & Xiang, Liyun & Deng, Xiaoya & Zhang, Pei & Hai, Yang & Wang, Jie & Li, Yang, 2020. "The verification of Jevons’ paradox of agricultural Water conservation in Tianshan District of China based on Water footprint," Agricultural Water Management, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.