A spatial-temporal optimal allocation method of irrigation water resources considering groundwater level
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2022.108021
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Seidel, S.J. & Barfus, K. & Gaiser, T. & Nguyen, T.H. & Lazarovitch, N., 2019. "The influence of climate variability, soil and sowing date on simulation-based crop coefficient curves and irrigation water demand," Agricultural Water Management, Elsevier, vol. 221(C), pages 73-83.
- Singh, Ajay, 2018. "Assessment of different strategies for managing the water resources problems of irrigated agriculture," Agricultural Water Management, Elsevier, vol. 208(C), pages 187-192.
- Magidi, J. & van Koppen, Barbara & Nhamo, L. & Mpandeli, S. & Slotow, R. & Mabhaudhi, Tafadzwanashe, 2021. "Informing equitable water and food policies through accurate spatial information on irrigated areas in smallholder farming systems," Papers published in Journals (Open Access), International Water Management Institute, pages 1-13(24):36.
- Lina Mi & Juncang Tian & Jianning Si & Yuchun Chen & Yinghai Li & Xinhe Wang, 2020. "Evolution of Groundwater in Yinchuan Oasis at the Upper Reaches of the Yellow River after Water-Saving Transformation and Its Driving Factors," IJERPH, MDPI, vol. 17(4), pages 1-17, February.
- Zou, Yufeng & Saddique, Qaisar & Ali, Ajaz & Xu, Jiatun & Khan, Muhammad Imran & Qing, Mu & Azmat, Muhammad & Cai, Huanjie & Siddique, Kadambot H.M., 2021. "Deficit irrigation improves maize yield and water use efficiency in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 243(C).
- Linker, Raphael, 2020. "Unified framework for model-based optimal allocation of crop areas and water," Agricultural Water Management, Elsevier, vol. 228(C).
- Shangguan, Zhouping & Shao, Mingan & Horton, Robert & Lei, Tingwu & Qin, Lin & Ma, Jianqing, 2002. "A model for regional optimal allocation of irrigation water resources under deficit irrigation and its applications," Agricultural Water Management, Elsevier, vol. 52(2), pages 139-154, January.
- Liu, Zhongyi & Chen, Hang & Huo, Zailin & Wang, Fengxin & Shock, Clinton C., 2016. "Analysis of the contribution of groundwater to evapotranspiration in an arid irrigation district with shallow water table," Agricultural Water Management, Elsevier, vol. 171(C), pages 131-141.
- Li, Jiang & Shang, Songhao & Jiang, Hongzhe & Song, Jian & Rahman, Khalil Ur & Adeloye, Adebayo J., 2021. "Simulation-based optimization for spatiotemporal allocation of irrigation water in arid region," Agricultural Water Management, Elsevier, vol. 254(C).
- Kahlown, M.A. & Ashraf, M. & Zia-ul-Haq, 2005. "Effect of shallow groundwater table on crop water requirements and crop yields," Agricultural Water Management, Elsevier, vol. 76(1), pages 24-35, July.
- Jinxia Wang & Yuting Jiang & Huimin Wang & Qiuqiong Huang & Hongbo Deng, 2020. "Groundwater irrigation and management in northern China: status, trends, and challenges," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 36(4), pages 670-696, July.
- Berbel, Julio & Expósito, Alfonso, 2022. "A decision model for stochastic optimization of seasonal irrigation-water allocation," Agricultural Water Management, Elsevier, vol. 262(C).
- Chen, Shuai & Mao, Xiaomin & Shang, Songhao, 2022. "Response and contribution of shallow groundwater to soil water/salt budget and crop growth in layered soils," Agricultural Water Management, Elsevier, vol. 266(C).
- Jiang, Xuelian & Kang, Shaozhong & Tong, Ling & Li, Fusheng & Li, Donghao & Ding, Risheng & Qiu, Rangjian, 2014. "Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 142(C), pages 135-143.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wu, Shiang-Jen & Yang, Han-Yuan & Chang, Che-Hao & Hsu, Chih-Tsung, 2023. "Modeling GA-derived optimization analysis for canal-based irrigation water allocation under variations in runoff-related and irrigation-related factors," Agricultural Water Management, Elsevier, vol. 290(C).
- Qiuli Zheng & Chunfang Yue & Shengjiang Zhang & Chengbao Yao & Qin Zhang, 2024. "Optimal Allocation of Water Resources in Canal Systems Based on the Improved Grey Wolf Algorithm," Sustainability, MDPI, vol. 16(9), pages 1-16, April.
- Shuoyang Li & Guiyu Yang & Cui Chang & Hao Wang & Hongling Zhang & Na Zhang & Zhigong Peng & Yaomingqi Song, 2024. "Remote Sensing Inversion of Salinization Degree Distribution and Analysis of Its Influencing Factors in an Arid Irrigated District," Land, MDPI, vol. 13(4), pages 1-18, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
- Xu, Xianghui & Chen, Yingshan & Zhou, Yan & Liu, Wuyuan & Zhang, Xinrui & Li, Mo, 2023. "Sustainable management of agricultural water rights trading under uncertainty: An optimization-evaluation framework," Agricultural Water Management, Elsevier, vol. 280(C).
- Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
- Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
- Gao, Xiaoyu & Bai, Yining & Huo, Zailin & Xu, Xu & Huang, Guanhua & Xia, Yuhong & Steenhuis, Tammo S., 2017. "Deficit irrigation enhances contribution of shallow groundwater to crop water consumption in arid area," Agricultural Water Management, Elsevier, vol. 185(C), pages 116-125.
- Machakaire, A.T.B. & Steyn, J.M. & Franke, A.C., 2021. "Assessing evapotranspiration and crop coefficients of potato in a semi-arid climate using Eddy Covariance techniques," Agricultural Water Management, Elsevier, vol. 255(C).
- Rong, Yao & Dai, Xiaoqin & Wang, Weishu & Wu, Peijin & Huo, Zailin, 2023. "Dependence of evapotranspiration validity on shallow groundwater in arid area-a three years field observation experiment," Agricultural Water Management, Elsevier, vol. 286(C).
- Gao, Xiaoyu & Huo, Zailin & Xu, Xu & Qu, Zhongyi & Huang, Guanhua & Tang, Pengcheng & Bai, Yining, 2018. "Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation," Agricultural Water Management, Elsevier, vol. 208(C), pages 43-58.
- Li, Mo & Sun, Hao & Liu, Dong & Singh, Vijay P. & Fu, Qiang, 2021. "Multi-scale modeling for irrigation water and cropland resources allocation considering uncertainties in water supply and demand," Agricultural Water Management, Elsevier, vol. 246(C).
- Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
- Muhammad Amin & Mobushir Riaz Khan & Sher Shah Hassan & Muhammad Imran & Muhammad Hanif & Irfan Ahmad Baig, 2023. "Determining satellite-based evapotranspiration product and identifying relationship with other observed data in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 23-39, January.
- Parkes, Martin & Jian, Wang & Knowles, Rupert, 2005. "Peak crop coefficient values for Shaanxi, North-west China," Agricultural Water Management, Elsevier, vol. 73(2), pages 149-168, May.
- Zhang, Xianbo & Yang, Hui & Shukla, Manoj K. & Du, Taisheng, 2023. "Proposing a crop-water-salt production function based on plant response to stem water potential," Agricultural Water Management, Elsevier, vol. 278(C).
- Chen, Shang & He, Liang & Cao, Yinxuan & Wang, Runhong & Wu, Lianhai & Wang, Zhao & Zou, Yufeng & Siddique, Kadambot H.M. & Xiong, Wei & Liu, Manshuang & Feng, Hao & Yu, Qiang & Wang, Xiaoming & He, J, 2021. "Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 258(C).
- Balali, Hamid & Khalilian, Sadegh & Viaggi, Davide & Bartolini, Fabio & Ahmadian, Majid, 2011. "Groundwater balance and conservation under different water pricing and agricultural policy scenarios: A case study of the Hamadan-Bahar plain," Ecological Economics, Elsevier, vol. 70(5), pages 863-872, March.
- Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
- Libardi, Luís Guilherme Polizel & de Faria, Rogério Teixeira & Dalri, Alexandre Barcellos & de Souza Rolim, Glauco & Palaretti, Luiz Fabiano & Coelho, Anderson Prates & Martins, Izabela Paiva, 2019. "Evapotranspiration and crop coefficient (Kc) of pre-sprouted sugarcane plantlets for greenhouse irrigation management," Agricultural Water Management, Elsevier, vol. 212(C), pages 306-316.
- Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
- Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
- Li, Jingang & He, Pingru & Chen, Jing & Hamad, Amar Ali Adam & Dai, Xiaoping & Jin, Qiu & Ding, Siyu, 2023. "Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water," Agricultural Water Management, Elsevier, vol. 285(C).
More about this item
Keywords
Efficient utilization of water resources; Groundwater level; Water use constraints; Water resources allocation; Irrigation district;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:275:y:2023:i:c:s0378377422005686. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.