IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v73y2005i2p149-168.html
   My bibliography  Save this article

Peak crop coefficient values for Shaanxi, North-west China

Author

Listed:
  • Parkes, Martin
  • Jian, Wang
  • Knowles, Rupert

Abstract

No abstract is available for this item.

Suggested Citation

  • Parkes, Martin & Jian, Wang & Knowles, Rupert, 2005. "Peak crop coefficient values for Shaanxi, North-west China," Agricultural Water Management, Elsevier, vol. 73(2), pages 149-168, May.
  • Handle: RePEc:eee:agiwat:v:73:y:2005:i:2:p:149-168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(04)00269-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, David, 1999. "A comparison of soil-water distribution under ridge and bed cultivated potatoes," Agricultural Water Management, Elsevier, vol. 42(2), pages 189-204, November.
    2. Liu, Y. & Teixeira, J. L. & Zhang, H. J. & Pereira, L. S., 1998. "Model validation and crop coefficients for irrigation scheduling in the North China plain," Agricultural Water Management, Elsevier, vol. 36(3), pages 233-246, April.
    3. Shangguan, Zhouping & Shao, Mingan & Horton, Robert & Lei, Tingwu & Qin, Lin & Ma, Jianqing, 2002. "A model for regional optimal allocation of irrigation water resources under deficit irrigation and its applications," Agricultural Water Management, Elsevier, vol. 52(2), pages 139-154, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Metin Sezen, S. & Yazar, Attila, 2006. "Wheat yield response to line-source sprinkler irrigation in the arid Southeast Anatolia region of Turkey," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 59-76, March.
    2. Wang, Yunfei & Cai, Huanjie & Yu, Lianyu & Peng, Xiongbiao & Xu, Jiatun & Wang, Xiaowen, 2020. "Evapotranspiration partitioning and crop coefficient of maize in dry semi-humid climate regime," Agricultural Water Management, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    2. Zhou, Zhenjiang & Plauborg, Finn & Parsons, David & Andersen, Mathias Neumann, 2018. "Potato canopy growth, yield and soil water dynamics under different irrigation systems," Agricultural Water Management, Elsevier, vol. 202(C), pages 9-18.
    3. Weiwei Shao & Dawen Yang & Heping Hu & Kenji Sanbongi, 2009. "Water Resources Allocation Considering the Water Use Flexible Limit to Water Shortage—A Case Study in the Yellow River Basin of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 869-880, March.
    4. Popova, Zornitsa & Pereira, Luis S., 2011. "Modelling for maize irrigation scheduling using long term experimental data from Plovdiv region, Bulgaria," Agricultural Water Management, Elsevier, vol. 98(4), pages 675-683, February.
    5. Abbas Amini Fasakhodi & Seyed Nouri & Manouchehr Amini, 2010. "Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4639-4657, December.
    6. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Goncalves, J.M. & Pereira, L.S. & Fang, S.X. & Dong, B., 2007. "Modelling and multicriteria analysis of water saving scenarios for an irrigation district in the upper Yellow River Basin," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 93-108, December.
    8. Tran, Lap Doc & Schilizzi, Steven & Chalak, Morteza & Kingwell, Ross, 2011. "Optimizing competitive uses of water for irrigation and fisheries," Agricultural Water Management, Elsevier, vol. 101(1), pages 42-51.
    9. Shang, Songhao & Li, Xichun & Mao, Xiaomin & Lei, Zhidong, 2004. "Simulation of water dynamics and irrigation scheduling for winter wheat and maize in seasonal frost areas," Agricultural Water Management, Elsevier, vol. 68(2), pages 117-133, August.
    10. Zhu, Yuli & Liang, Ji & Yang, Qing & Zhou, Hewen & Peng, Kun, 2019. "Water use of a biomass direct-combustion power generation system in China: A combination of life cycle assessment and water footprint analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    12. Yue, Qiong & Zhang, Fan & Zhang, Chenglong & Zhu, Hua & Tang, Yikuan & Guo, Ping, 2020. "A full fuzzy-interval credibility-constrained nonlinear programming approach for irrigation water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 230(C).
    13. Shang, Songhao & Mao, Xiaomin, 2006. "Application of a simulation based optimization model for winter wheat irrigation scheduling in North China," Agricultural Water Management, Elsevier, vol. 85(3), pages 314-322, October.
    14. Lei Liu & Jianqin Ma & Xiuping Hao & Qingyun Li, 2019. "Limitations of Water Resources to Crop Water Requirement in the Irrigation Districts along the Lower Reach of the Yellow River in China," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    15. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2015. "Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model," Agricultural Water Management, Elsevier, vol. 147(C), pages 67-81.
    16. Dedi Liu & Xiaohong Chen & Zhanghua Lou, 2010. "A Model for the Optimal Allocation of Water Resources in a Saltwater Intrusion Area: A Case Study in Pearl River Delta in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 63-81, January.
    17. Chen, Shu & Xu, Jijun & Li, Qingqing & Tan, Xuezhi & Nong, Xizhi, 2019. "A copula-based interval-bistochastic programming method for regional water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 217(C), pages 154-164.
    18. Javier Alarcón & Alberto Garrido & Luis Juana, 2014. "Managing Irrigation Water Shortage: a Comparison Between Five Allocation Rules Based on Crop Benefit Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2315-2329, June.
    19. Liu, Haijun & Yu, Lipeng & Luo, Yu & Wang, Xiangping & Huang, Guanhua, 2011. "Responses of winter wheat (Triticum aestivum L.) evapotranspiration and yield to sprinkler irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(4), pages 483-492, February.
    20. Galelli, S. & Gandolfi, C. & Soncini-Sessa, R. & Agostani, D., 2010. "Building a metamodel of an irrigation district distributed-parameter model," Agricultural Water Management, Elsevier, vol. 97(2), pages 187-200, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:73:y:2005:i:2:p:149-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.