IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v272y2022ics0378377422004188.html
   My bibliography  Save this article

Elevated temperature further inhibited cottonseed protein synthesis under severe drought, but promoted cottonseed protein synthesis under mild drought

Author

Listed:
  • Xu, Bingjie
  • Gao, Min
  • Wang, Shanshan
  • Wang, Youhua
  • Zhou, Zhiguo
  • Hu, Wei

Abstract

Cottonseed as the main by-product of cotton has important industrial utilization value due to the high protein content. Although previous studies found that high temperature or drought can affect cottonseed protein yield, reports on the detailed physiological mechanisms are limited. Moreover, the combination of the two stresses on cottonseed protein synthesis has received little attention. To address this, two cotton cultivars, Sumian 15 and PHY370WR, were exposed to two temperature regimes consisting of ambient temperature and elevated temperature (ambient temperature plus 2.5–2.7 °C), and three water treatments including soil relative water content (SRWC)(75 ± 5)% (optimum soil moisture), SRWC(60 ± 5)% (mild drought) and SRWC(45 ± 5)% (severe drought) were established under each temperature regime. Results showed that individual elevated temperature or drought had quite different effects on protein synthesis. Elevated temperature alone improved the kernel protein content by 3.90–8.53% for both cultivars compared with ambient temperature by increasing the maximum rate of protein accumulation (Vm). Moreover, elevated temperature alone enhanced amino acid synthesis by increasing the activity of glutamine synthetase (GS) and glutamate synthase (GOGAT) and the expression of GhGS and GhGOGAT, which was also good for increasing protein content. Mild drought slightly affected the protein accumulation during cottonseed kernel development. Although the duration of protein rapid accumulation increased, severe drought significantly decreased the Vm and the activity of GS and GOGAT as well as the expression of GhGS and GhGOGAT, finally leading to lower protein content. The interaction effect between the two stresses on protein synthesis was significant, since elevated temperature promoted protein synthesis under mild drought by increasing the Vm, the activity of GS and GOGAT, and the expression of GhGS and GhGOGAT; however, elevated temperature further reduced GS and GOGAT activities and GhGS and GhGOGAT expressions to inhibit protein synthesis under severe drought.

Suggested Citation

  • Xu, Bingjie & Gao, Min & Wang, Shanshan & Wang, Youhua & Zhou, Zhiguo & Hu, Wei, 2022. "Elevated temperature further inhibited cottonseed protein synthesis under severe drought, but promoted cottonseed protein synthesis under mild drought," Agricultural Water Management, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:agiwat:v:272:y:2022:i:c:s0378377422004188
    DOI: 10.1016/j.agwat.2022.107871
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422004188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick T. Brown & Ken Caldeira, 2017. "Greater future global warming inferred from Earth’s recent energy budget," Nature, Nature, vol. 552(7683), pages 45-50, December.
    2. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namra Ghaffar & Bushra Noreen & Maryam Muhammad Ali & Amna Ali, 2021. "Rice Yield Estimation in Sawat Region Incorporating The Local Physio-Climatic Parameters," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(2), pages 46-50, June.
    2. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    3. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    4. Ignaciuk, Ada & Malevolti, Giulia & Scognamillo, Antonio & Sitko, Nicholas J., 2022. "Can food aid relax farmers’ constraints to adopting climate-adaptive agricultural practices? Evidence from Ethiopia, Malawi and the United Republic of Tanzania," ESA Working Papers 324073, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    5. Dilshad Ahmad & Muhammad Afzal & Abdur Rauf, 2019. "Analysis of wheat farmers’ risk perceptions and attitudes: evidence from Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 845-861, February.
    6. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    7. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    8. Konrad Prandecki & Edyta Gajos, 2018. "Reductin of greenhouse gases emission and sustainability: The multi-criteria approach," International Conference on Competitiveness of Agro-food and Environmental Economy Proceedings, The Bucharest University of Economic Studies, vol. 7, pages 46-54.
    9. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    10. Gil-Clavel, Sofia & Wagenblast, Thorid & Filatova, Tatiana, 2023. "Farmers’ Incremental and Transformational Climate Change Adaptation in Different Regions: A Natural Language Processing Comparative Literature Review," SocArXiv 3dp5e, Center for Open Science.
    11. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    12. Kamdi, Prasad Jairam & Swain, Dillip Kumar & Wani, Suhas P., 2023. "Developing climate change agro-adaptation strategies through field experiments and simulation analyses for sustainable sorghum production in semi-arid tropics of India," Agricultural Water Management, Elsevier, vol. 286(C).
    13. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    14. Angga Pradesha & Sherman Robinson & Mark W. Rosegrant & Nicostrato Perez & Timothy S. Thomas, 2022. "Exploring transformational adaptation strategy through agricultural policy reform in the Philippines," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1435-1447, December.
    15. Chen, Xiaoguang & Khanna, Madhu & Yang, Lu, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(02), January.
    16. Imran, Muhammad Ali & Ali, Asghar & Ashfaq, Muhammad & Hassan, Sarfraz & Culas, Richard & Ma, Chunbo, 2019. "Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton," Land Use Policy, Elsevier, vol. 88(C).
    17. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    18. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    19. Bairagi, Subir & Bhandari, Humnath & Kumar Das, Subrata & Mohanty, Samarendu, 2021. "Flood-tolerant rice improves climate resilience, profitability, and household consumption in Bangladesh," Food Policy, Elsevier, vol. 105(C).
    20. Zack Guido & Sara Lopus & Kurt Waldman & Corrie Hannah & Andrew Zimmer & Natasha Krell & Chris Knudson & Lyndon Estes & Kelly Caylor & Tom Evans, 2021. "Perceived links between climate change and weather forecast accuracy: new barriers to tools for agricultural decision-making," Climatic Change, Springer, vol. 168(1), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:272:y:2022:i:c:s0378377422004188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.