Optimal bed width for wheat following rice production with raised-bed planting in the Yangtze River Plain of China
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2022.107676
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Du, Xiangbei & He, Wenchang & Gao, Shangqin & Liu, Dong & Wu, Wenge & Tu, Debao & Kong, Lingcong & Xi, Min, 2022. "Raised bed planting increases economic efficiency and energy use efficiency while reducing the environmental footprint for wheat after rice production," Energy, Elsevier, vol. 245(C).
- Liu, Xiaoli & Wang, Yandong & Yan, Xiaoqun & Hou, Huizhi & Liu, Pei & Cai, Tie & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong & Chen, Xiaoli, 2020. "Appropriate ridge-furrow ratio can enhance crop production and resource use efficiency by improving soil moisture and thermal condition in a semi-arid region," Agricultural Water Management, Elsevier, vol. 240(C).
- Luo, Chong-Liang & Zhang, Xiao-Feng & Duan, Hai-Xia & Zhou, Rui & Mo, Fei & Mburu, David M. & Wang, Bao-Zhong & Wang, Wei & Kavagi, Levis & Xiong, You-Cai, 2021. "Responses of rainfed wheat productivity to varying ridge-furrow size and ratio in semiarid eastern African Plateau," Agricultural Water Management, Elsevier, vol. 249(C).
- Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
- Li, Quanqi & Chen, Yuhai & Liu, Mengyu & Zhou, Xunbo & Yu, Songlie & Dong, Baodi, 2008. "Effects of irrigation and planting patterns on radiation use efficiency and yield of winter wheat in North China," Agricultural Water Management, Elsevier, vol. 95(4), pages 469-476, April.
- Yuying Pan & Xuebiao Pan & Tan Zi & Qi Hu & Jing Wang & Guolin Han & Jialin Wang & Zhihua Pan, 2019. "Optimal Ridge–Furrow Ratio for Maximum Drought Resilience of Sunflower in Semi-Arid Region of China," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kun Liu & Zhen Zhang & Yu Shi & Xizhi Wang & Zhenwen Yu, 2024. "Optimizing Ridge–Furrow Ratio to Improve Water Resource Utilization for Wheat in the North China Plain," Agriculture, MDPI, vol. 14(9), pages 1-17, September.
- Liu, Junming & Si, Zhuanyun & Wu, Lifeng & Shen, Xiaojun & Gao, Yang & Duan, Aiwang, 2023. "High-low seedbed cultivation drives the efficient utilization of key production resources and the improvement of wheat productivity in the North China Plain," Agricultural Water Management, Elsevier, vol. 285(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Guangxin & Dai, Rongcheng & Ma, Wenzhuo & Fan, Hengzhi & Meng, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Optimizing the ridge–furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China," Agricultural Water Management, Elsevier, vol. 262(C).
- Kun Liu & Zhen Zhang & Yu Shi & Xizhi Wang & Zhenwen Yu, 2024. "Optimizing Ridge–Furrow Ratio to Improve Water Resource Utilization for Wheat in the North China Plain," Agriculture, MDPI, vol. 14(9), pages 1-17, September.
- Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of ridge–furrow ratio and urea type on grain yield and water productivity of rainfed winter wheat on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 261(C).
- Zhang, Xuemei & Wang, Rui & Liu, Bo & Wang, Youcai & Yang, Linchuan & Zhao, Ji & Xu, Jing & Li, Zhimin & Zhang, Xudong & Han, Qingfang, 2023. "Optimization of ridge–furrow mulching ratio enhances precipitation collection before silking to improve maize yield in a semi–arid region," Agricultural Water Management, Elsevier, vol. 275(C).
- Ruofan Li & Juanjuan Ma & Xihuan Sun & Xianghong Guo & Lijian Zheng, 2021. "Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns," Agriculture, MDPI, vol. 11(11), pages 1-20, November.
- Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
- Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng, 2022. "Optimization of drip irrigation and fertilization regimes to enhance winter wheat grain yield by improving post-anthesis dry matter accumulation and translocation in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
- Liu, Xiaoli & Wang, Yandong & Zhang, Yuehe & Ren, Xiaolong & Chen, Xiaoli, 2022. "Can rainwater harvesting replace conventional irrigation for winter wheat production in dry semi-humid areas in China?," Agricultural Water Management, Elsevier, vol. 272(C).
- Q.Q. Li & X.B. Zhou & Y.H. Chen & S.L. Yu, 2010. "Grain yield and quality of winter wheat in different planting patterns under deficit irrigation regimes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(10), pages 482-487.
- Alexander Esaulko & Vladimir Sitnikov & Elena Pismennaya & Olga Vlasova & Evgeniy Golosnoi & Alena Ozheredova & Anna Ivolga & Vasilii Erokhin, 2022. "Productivity of Winter Wheat Cultivated by Direct Seeding: Measuring the Effect of Hydrothermal Coefficient in the Arid Zone of Central Fore-Caucasus," Agriculture, MDPI, vol. 13(1), pages 1-17, December.
- Zhang, Binbin & Su, Shunshun & Duan, Chenxiao & Feng, Hao & Chau, Henry Wai & He, Jianqiang & Li, Yi & Hill, Robert Lee & Wu, Shufang & Zou, Yufeng, 2022. "Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-," Agricultural Water Management, Elsevier, vol. 260(C).
- Tang, Zijun & Lu, Junsheng & Xiang, Youzhen & Shi, Hongzhao & Sun, Tao & Zhang, Wei & Wang, Han & Zhang, Xueyan & Li, Zhijun & Zhang, Fucang, 2024. "Farmland mulching and optimized irrigation increase water productivity and seed yield by regulating functional parameters of soybean (Glycine max L.) leaves," Agricultural Water Management, Elsevier, vol. 298(C).
- Du, Xue-zhu & Hao, Mian & Guo, Li-jin & Li, Shi-hao & Hu, Wan-ling & Sheng, Feng & Li, Cheng-fang, 2022. "Integrated assessment of carbon footprint and economic profit from paddy fields under microbial decaying agents with diverse water regimes in central China," Agricultural Water Management, Elsevier, vol. 262(C).
- Dandan, Zhao & Jiayin, Shen & Kun, Lang & Quanru, Liu & Quanqi, Li, 2013. "Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 118(C), pages 87-92.
- Ye, Tianyang & Ma, Jifeng & Zhang, Pei & Shan, Song & Liu, Leilei & Tang, Liang & Cao, Weixing & Liu, Bing & Zhu, Yan, 2022. "Interaction effects of irrigation and nitrogen on the coordination between crop water productivity and nitrogen use efficiency in wheat production on the North China Plain," Agricultural Water Management, Elsevier, vol. 271(C).
- Gao, Jia & Zhang, Yingjun & Xu, Chenchen & Wang, Pu & Huang, Shoubing & Lv, Yanjie, 2024. "Enhancing spatial and temporal coordination of soil water and root growth to improve maize (Zea mays L.) yield," Agricultural Water Management, Elsevier, vol. 294(C).
- Duan, Chenxiao & Li, Jiabei & Zhang, Binbin & Wu, Shufang & Fan, Junliang & Feng, Hao & He, Jianqiang & Siddique, Kadambot H.M., 2023. "Effect of bio-organic fertilizer derived from agricultural waste resources on soil properties and winter wheat (Triticum aestivum L.) yield in semi-humid drought-prone regions," Agricultural Water Management, Elsevier, vol. 289(C).
- Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Sohail, Amir & Manzoor, & Arif, Muhammad & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "The ridge-furrow system combined with supplemental irrigation strategies to improves radiation use efficiency and winter wheat productivity in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 76-86.
- Liu, Junming & Si, Zhuanyun & Wu, Lifeng & Shen, Xiaojun & Gao, Yang & Duan, Aiwang, 2023. "High-low seedbed cultivation drives the efficient utilization of key production resources and the improvement of wheat productivity in the North China Plain," Agricultural Water Management, Elsevier, vol. 285(C).
- Guixin Zhang & Shibo Zhang & Zhenqing Xia & Mengke Wu & Jingxuan Bai & Haidong Lu, 2023. "Effects of Biodegradable Film and Polyethylene Film Residues on Soil Moisture and Maize Productivity in Dryland," Agriculture, MDPI, vol. 13(2), pages 1-17, January.
More about this item
Keywords
Raised bed planting; Bed size; Soil water content; Radiation capture; Economic benefit;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002232. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.