IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v269y2022ics0378377422001950.html
   My bibliography  Save this article

Rainfall shocks and crop productivity in Zambia: Implication for agricultural water risk management

Author

Listed:
  • Matchaya, Greenwell C.
  • Tadesse, Getaw
  • Kuteya, Auckland N.

Abstract

This paper investigates the impact of erratic rainfall and related water problems on agricultural productivity. The paper also aims to shed light on the conceptual importance of understanding the incidence and impacts of rainfall shocks for choosing feasible agricultural water risk management strategies both at household and policy levels. To achieve these goals we develop a conceptual framework, use national representative data from Zambia’s crop estimates survey for 2017/2018 farming season, employ fixed effects regression approach, and find that dry spells, excessive floods, incidence of water logging are all detrimental to crop productivity. The crop-based equations also reveal the differential impacts of the rainfall shocks on different crops. Since the effect of water factors including dry spells, floods and water logging on agricultural productivity is dependent on the crop types, it is important for the Zambian government as well as other countries to take this into account when planning and implementing strategies for agricultural water risk management.

Suggested Citation

  • Matchaya, Greenwell C. & Tadesse, Getaw & Kuteya, Auckland N., 2022. "Rainfall shocks and crop productivity in Zambia: Implication for agricultural water risk management," Agricultural Water Management, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422001950
    DOI: 10.1016/j.agwat.2022.107648
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422001950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dercon, Stefan & Christiaensen, Luc, 2011. "Consumption risk, technology adoption and poverty traps: Evidence from Ethiopia," Journal of Development Economics, Elsevier, vol. 96(2), pages 159-173, November.
    2. Barrett, Christopher B., 1996. "On price risk and the inverse farm size-productivity relationship," Journal of Development Economics, Elsevier, vol. 51(2), pages 193-215, December.
    3. Douglas Gollin & David Lagakos & Michael E. Waugh, 2014. "Agricultural Productivity Differences across Countries," American Economic Review, American Economic Association, vol. 104(5), pages 165-170, May.
    4. Ngoma, Hambulo & Hamududu, Byman & Hangoma, Peter & Samboko, Paul & Hichaambwa, Munguzwe & Kabaghe, Chance, 2019. "Irrigation Development for Climate Resilience in Zambia: The Known Knowns and Known Unknowns," Feed the Future Innovation Lab for Food Security Policy Research Papers 303048, Michigan State University, Department of Agricultural, Food, and Resource Economics, Feed the Future Innovation Lab for Food Security (FSP).
    5. Jin, Songqing & Yu, Winston & Jansen, Hans G.P. & Muraoka, Rie, 2012. "The impact of Irrigation on Agricultural Productivity: Evidence from India," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126868, International Association of Agricultural Economists.
    6. Carletto, Calogero & Savastano, Sara & Zezza, Alberto, 2013. "Fact or artifact: The impact of measurement errors on the farm size–productivity relationship," Journal of Development Economics, Elsevier, vol. 103(C), pages 254-261.
    7. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2016. "Drought effects on root and tuber production: A meta-analysis," Agricultural Water Management, Elsevier, vol. 176(C), pages 122-131.
    8. Mendola, Mariapia, 2007. "Agricultural technology adoption and poverty reduction: A propensity-score matching analysis for rural Bangladesh," Food Policy, Elsevier, vol. 32(3), pages 372-393, June.
    9. Komarek, Adam M. & De Pinto, Alessandro & Smith, Vincent H., 2020. "A review of types of risks in agriculture: What we know and what we need to know," Agricultural Systems, Elsevier, vol. 178(C).
    10. Olayide, Olawale Emmanuel & Tetteh, Isaac Kow & Popoola, Labode, 2016. "Differential impacts of rainfall and irrigation on agricultural production in Nigeria: Any lessons for climate-smart agriculture?," Agricultural Water Management, Elsevier, vol. 178(C), pages 30-36.
    11. Hans P. Binswanger, 2000. "The Growth Performance of Agriculture in Subsaharan Africa," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(5), pages 1075-1086.
    12. Loayza, Norman V. & Raddatz, Claudio, 2010. "The composition of growth matters for poverty alleviation," Journal of Development Economics, Elsevier, vol. 93(1), pages 137-151, September.
    13. Sein Mar & Hisako Nomura & Yoshifumi Takahashi & Kazuo Ogata & Mitsuyasu Yabe, 2018. "Impact of Erratic Rainfall from Climate Change on Pulse Production Efficiency in Lower Myanmar," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
    14. Amare, Mulubrhan & Jensen, Nathaniel D. & Shiferaw, Bekele & Cissé, Jennifer Denno, 2018. "Rainfall shocks and agricultural productivity: Implication for rural household consumption," Agricultural Systems, Elsevier, vol. 166(C), pages 79-89.
    15. Michael Morris & Valerie A. Kelly & Ron J. Kopicki & Derek Byerlee, 2007. "Fertilizer Use in African Agriculture : Lessons Learned and Good Practice Guidelines," World Bank Publications - Books, The World Bank Group, number 6650.
    16. Jeremy Diem & Sadie Ryan & Joel Hartter & Michael Palace, 2014. "Satellite-based rainfall data reveal a recent drying trend in central equatorial Africa," Climatic Change, Springer, vol. 126(1), pages 263-272, September.
    17. Mulubrhan Amare & Bekele Shiferaw, 2017. "Nonfarm employment, agricultural intensification, and productivity change: empirical findings from Uganda," Agricultural Economics, International Association of Agricultural Economists, vol. 48(S1), pages 59-72, November.
    18. Diao, Xinshen & Hazell, Peter & Thurlow, James, 2010. "The Role of Agriculture in African Development," World Development, Elsevier, vol. 38(10), pages 1375-1383, October.
    19. Benin, Samuel (ed.), 2016. "Agricultural productivity in Africa: Trends, patterns, and determinants," IFPRI books, International Food Policy Research Institute (IFPRI), number 978-0-89629-881-1.
    20. Chilonda, Pius. & Matchaya, Greenwell. & Chiwaula, L. & Kambewa, P. & Musaba, Emmanuel. & Manyamba, C., 2013. "Agricultural growth trends and outlook for southern Africa: enhancing regional food security through increased agricultural productivity," IWMI Research Reports H046770, International Water Management Institute.
    21. Benin, Samuel, 2016. "Agricultural productivity in Africa: Trends, patterns, and determinants: Synopsis," IFPRI synopses 9780896298828, International Food Policy Research Institute (IFPRI).
    22. Collier, Paul & Dercon, Stefan, 2014. "African Agriculture in 50Years: Smallholders in a Rapidly Changing World?," World Development, Elsevier, vol. 63(C), pages 92-101.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amare, Mulubrhan & Jensen, Nathaniel D. & Shiferaw, Bekele & Cissé, Jennifer Denno, 2018. "Rainfall shocks and agricultural productivity: Implication for rural household consumption," Agricultural Systems, Elsevier, vol. 166(C), pages 79-89.
    2. Mulubrhan Amare & Bekele Shiferaw & Hiroyuki Takeshima & George Mavrotas, 2021. "Variability in agricultural productivity and rural household consumption inequality: Evidence from Nigeria and Uganda," Agricultural Economics, International Association of Agricultural Economists, vol. 52(1), pages 19-36, January.
    3. Larson,Donald F. & Muraoka,Rie & Otsuka,Keijiro, 2016. "On the central role of small farms in African rural development strategies," Policy Research Working Paper Series 7710, The World Bank.
    4. Ben Brunckhorst, 2020. "Rural Mobility and Climate Vulnerability: Evidence from the 2015 Drought in Ethiopia," CSAE Working Paper Series 2020-17, Centre for the Study of African Economies, University of Oxford.
    5. Aragón, Fernando M. & Restuccia, Diego & Rud, Juan Pablo, 2022. "Are small farms really more productive than large farms?," Food Policy, Elsevier, vol. 106(C).
    6. Díaz, Juan-José & Saldarriaga, Victor, 2023. "A drop of love? Rainfall shocks and spousal abuse: Evidence from rural Peru," Journal of Health Economics, Elsevier, vol. 89(C).
    7. Fang Xia & Lingling Hou & Songqing Jin & Dongqing Li, 2020. "Land size and productivity in the livestock sector: evidence from pastoral areas in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 867-888, July.
    8. Shikur, Zewdie Habte, 2021. "Potato and Tomato Supply and Yield Responses to Policy in Ethiopia," African Journal of Economic Review, African Journal of Economic Review, vol. 9(4), September.
    9. Giller, Ken E. & Andersson, Jens & Delaune, Thomas & Silva, João Vasco & Descheemaeker, Katrien & van de Ven, Gerrie & Schut, Antonius G.T. & van Wijk, Mark & Hammond, Jim & Hochman, Zvi & Taulya, God, 2022. "IFAD Research Series 83: The future of farming: who will produce our food?," IFAD Research Series 322005, International Fund for Agricultural Development (IFAD).
    10. Biggeri, Mario & Carraro, Alessandro & Ciani, Federico & Romano, Donato, 2022. "Disentangling the impact of a multiple-component project on SDG dimensions: The case of durum wheat value chain development in Oromia (Ethiopia)," World Development, Elsevier, vol. 153(C).
    11. Dorinet, Elizavetta & Jouvet, Pierre-André & Wolfersberger, Julien, 2021. "Is the agricultural sector cursed too? Evidence from Sub-Saharan Africa," World Development, Elsevier, vol. 140(C).
    12. Omotilewa, Oluwatoba J. & Jayne, T.S. & Muyanga, Milu & Aromolaran, Adebayo B. & Liverpool-Tasie, Lenis Saweda O. & Awokuse, Titus, 2021. "A revisit of farm size and productivity: Empirical evidence from a wide range of farm sizes in Nigeria," World Development, Elsevier, vol. 146(C).
    13. Desiere, Sam & Jolliffe, Dean, 2018. "Land productivity and plot size: Is measurement error driving the inverse relationship?," Journal of Development Economics, Elsevier, vol. 130(C), pages 84-98.
    14. Bannor, Frank & Dikgang, Johane & Kutela Gelo, Dambala, 2021. "Interdependence between research and development, climate variability and agricultural production: evidence from sub-Saharan Africa," MPRA Paper 105697, University Library of Munich, Germany.
    15. Markhof,Yannick Valentin & Ponzini,Giulia & Wollburg,Philip Randolph, 2022. "Measuring Disaster Crop Production Losses Using Survey Microdata : Evidence from Sub-Saharan Africa," Policy Research Working Paper Series 9968, The World Bank.
    16. Larson, Donald F. & Gurara, Daniel Zerfu, 2013. "A conceptual model of incomplete markets and the consequences for technology adoption policies in Ethiopia," Policy Research Working Paper Series 6681, The World Bank.
    17. Mengistu Assefa Wendimu & Arne Henningsen & Tomasz Gerard Czekaj, 2017. "Incentives and moral hazard: plot level productivity of factory-operated and outgrower-operated sugarcane production in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(5), pages 549-560, September.
    18. Schwerhoff, Gregor & Kalkuhl, Matthias & Waha, Katharina, 2016. "Agricultural Risk Management and Land Tenure," VfS Annual Conference 2016 (Augsburg): Demographic Change 145792, Verein für Socialpolitik / German Economic Association.
    19. Takeshima, Hiroyuki & Adhikari, Rajendra Prasad & Shivakoti, Sabnam & Kaphle, Basu Dev & Kumar, Anjani, 2017. "Heterogeneous returns to chemical fertilizer at the intensive margins: Insights from Nepal," Food Policy, Elsevier, vol. 69(C), pages 97-109.
    20. Dorosh, Paul & Thurlow, James, 2018. "Beyond Agriculture Versus Non-Agriculture: Decomposing Sectoral Growth–Poverty Linkages in Five African Countries," World Development, Elsevier, vol. 109(C), pages 440-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422001950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.