IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v263y2022ics0378377422000129.html
   My bibliography  Save this article

Managing irrigation supplies effectively under interrupted electricity supply: Lesson from an arid region of India

Author

Listed:
  • Kumar, Sanjay
  • Machiwal, Deepesh
  • Tetarwal, Arvind Singh
  • Ramniwas,
  • Vaishnav, Meera

Abstract

Groundwater extraction through electrically operated tubewells offers a resilient source of irrigation supply in arid regions especially during droughts. However, interrupted and low-voltage electric supply with limited availability and frequent trips increases repair and maintenance costs of tubewell irrigation and reduces tubewell discharge resulting in less-efficient and non-uniform water application. This study evaluates performance of an indigenous system of groundwater irrigation that was evolved over the generations in arid region of Gujarat, India to address electricity-triggered issues of irrigated agriculture. In this system, groundwater extracted during electricity availability hours is stored in surface reservoirs for later supplying to irrigate crops under gravity flow irrespective of electricity availability. A comprehensive survey of the indigenous system is conducted in a village of Gujarat to make inventory of all tubewells and storage reservoirs about their depth, size, pump type and horsepower, command area, crops, irrigation timing and frequency, etc. Discharge of tubewells was measured and their locations were recorded. Results revealed that the indigenous system is advantageous over the direct tubewell-irrigation in terms of 37.4% higher water-delivery rate and 50% more average irrigation capacity. These findings prove adequacy of the indigenous system in regulating irrigation supplies to deal with electricity-induced intricacies of irrigated agriculture. Amount of water lost through unit area of earthen (seepage and evaporation ∼2.77 m) and masonry (evaporation ∼1.22 m) reservoirs collectively accounts for a negligible proportion (0.9%) of groundwater draft. Furthermore, a methodology is devised to precisely estimate village-level groundwater draft for irrigation, which is validated by 0.9% deviation between observed and predicted values of groundwater draft. Moreover, the indigenous system is simple, cost-effective and easy to implement in other parts of the world especially in arid regions of the developing countries where low-voltage and intermitted electricity supply persists.

Suggested Citation

  • Kumar, Sanjay & Machiwal, Deepesh & Tetarwal, Arvind Singh & Ramniwas, & Vaishnav, Meera, 2022. "Managing irrigation supplies effectively under interrupted electricity supply: Lesson from an arid region of India," Agricultural Water Management, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377422000129
    DOI: 10.1016/j.agwat.2022.107465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422000129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carole Dalin & Yoshihide Wada & Thomas Kastner & Michael J. Puma, 2017. "Groundwater depletion embedded in international food trade," Nature, Nature, vol. 543(7647), pages 700-704, March.
    2. Shah, Tushaar & Bhatt, Sonal & Shah, R.K. & Talati, Jayesh, 2008. "Groundwater governance through electricity supply management: Assessing an innovative intervention in Gujarat, western India," Agricultural Water Management, Elsevier, vol. 95(11), pages 1233-1242, November.
    3. Ray, Sudatta, 2020. "Beyond Lights: The Changing Impact of Rural Electrification on Indian Agriculture," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304223, Agricultural and Applied Economics Association.
    4. Chinnasamy, Pennan & Misra, Gourav & Shah, Tushaar & Maheshwari, Basant & Prathapar, Sanmugam, 2015. "Evaluating the effectiveness of water infrastructures for increasing groundwater recharge and agricultural production – A case study of Gujarat, India," Agricultural Water Management, Elsevier, vol. 158(C), pages 179-188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pankaj Panwar & Deepesh Machiwal & Vandita Kumari & Sanjay Kumar & Pradeep Dogra & S. Manivannan & P. R. Bhatnagar & J. M. S. Tomar & Rajesh Kaushal & Dinesh Jinger & Pradip Kumar Sarkar & L. K. Baish, 2023. "Sustainable Water Harvesting for Improving Food Security and Livelihoods of Smallholders under Different Climatic Conditions of India," Sustainability, MDPI, vol. 15(12), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    2. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    3. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    4. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    5. Rulli, Maria Cristina & Casirati, Stefano & Dell’Angelo, Jampel & Davis, Kyle Frankel & Passera, Corrado & D’Odorico, Paolo, 2019. "Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 499-512.
    6. Johnston, Robyn & Hoanh, Chu Thai & Lacombe, Guillaume & Lefroy, R. & Pavelic, Paul & Fry, Carolyn., 2012. "Managing water in rainfed agriculture in the Greater Mekong Subregion. Final report prepared by IWMI for Swedish International Development Cooperation Agency (Sida)," IWMI Research Reports H044646, International Water Management Institute.
    7. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    8. Namrata Chindarkar & R. Quentin Grafton, 2019. "India's depleting groundwater: When science meets policy," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 6(1), pages 108-124, January.
    9. Khoung M. Vu & Anjula Gurtoo, 2014. "Utility Sector Performance Post Reforms: Investigating the South Asian Economies," Poverty & Public Policy, John Wiley & Sons, vol. 6(2), pages 157-175, June.
    10. Anna Herzberger & Min Gon Chung & Kelly Kapsar & Kenneth A. Frank & Jianguo Liu, 2019. "Telecoupled Food Trade Affects Pericoupled Trade and Intracoupled Production," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    11. Distefano, Tiziano & Chiarotti, Guido & Laio, Francesco & Ridolfi, Luca, 2019. "Spatial Distribution of the International Food Prices: Unexpected Heterogeneity and Randomness," Ecological Economics, Elsevier, vol. 159(C), pages 122-132.
    12. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    13. Pennan Chinnasamy & Ambadas B. Maske & Vaishnavi Honap & Sunita Chaudhary & Govindasamy Agoramoorthy, 2021. "Sustainable development of water resources in marginalised semi‐arid regions of India: Case study of Dahod in Gujarat, India," Natural Resources Forum, Blackwell Publishing, vol. 45(2), pages 105-119, May.
    14. Han, Feng & Zheng, Yi & Zhang, Ling & Xiong, Rui & Hu, Zhaoping & Tian, Yong & Li, Xin, 2023. "Simulating drip irrigation in large-scale and high-resolution ecohydrological models: From emitters to the basin," Agricultural Water Management, Elsevier, vol. 289(C).
    15. Boxin Wang & Bin Wang & Xiaobing Zhao & Jiao Li & Dasheng Zhang, 2023. "Study and Evaluation of Dynamic Carrying Capacity of Groundwater Resources in Hebei Province from 2010 to 2017," Sustainability, MDPI, vol. 15(5), pages 1-15, March.
    16. R. Quentin Grafton & Mahala McLindin & Karen Hussey & Paul Wyrwoll & Dennis Wichelns & Claudia Ringler & Dustin Garrick & Jamie Pittock & Sarah Wheeler & Stuart Orr & Nathanial Matthews & Erik Ansink , 2016. "Responding to Global Challenges in Food, Energy, Environment and Water: Risks and Options Assessment for Decision-Making," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 3(2), pages 275-299, May.
    17. Merhawi GebreEgziabher & Scott Jasechko & Debra Perrone, 2022. "Widespread and increased drilling of wells into fossil aquifers in the USA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Bahinipati, Chandra Sekhar & Viswanathan, P.K., 2019. "Incentivizing resource efficient technologies in India: Evidence from diffusion of micro-irrigation in the dark zone regions of Gujarat," Land Use Policy, Elsevier, vol. 86(C), pages 253-260.
    19. Nihit Goyal, 2021. "Limited Demand or Unreliable Supply? A Bibliometric Review and Computational Text Analysis of Research on Energy Policy in India," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    20. Hoffmann, Farina & Koellner, Thomas & Kastner, Thomas, 2021. "The micronutrient content of the European Union's agricultural trade," Ecological Economics, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377422000129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.