IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v260y2022ics0378377421006028.html
   My bibliography  Save this article

Soil nitrate leaching of tea plantation and its responses to seasonal drought and wetness scenarios

Author

Listed:
  • Liu, Fei
  • Zhu, Qing
  • Zhou, Zhiwen
  • Liao, Kaihua
  • Lai, Xiaoming

Abstract

Although the frequency and intensity of seasonal drought and wetness are increasing under climate change background, their effects on soil nitrate nitrogen (NO3--N) leaching have remained unclear. In this study, validated by the field data on a typical tea garden hillslope in Taihu basin, China, the Decomposition-Denitrification (DNDC) model was used to investigate these effects. The decennial drought, decennial wetness, and normal conditions of different seasons were combined to construct 31 scenarios. Results showed that seasonal drought decreased annual NO3--N leaching, with a reduction of 6.52%−18.70% (one-season drought), 18.62%−29.68% (two-season drought), 36.64%−43.99% (three-season drought) and 51.44% (all-season drought) relative to the normal scenario. Except the spring drought, drought in other seasons had legacy effects that increased NO3--N leaching in their succession seasons. The legacy effect of summer drought even continued till the summer of next year. Seasonal wetness increased annual NO3--N leaching, with an increase of 2.58%−11.39% (one-season wetness), 10.04%−22.31% (two-season wetness), 19.50%−29.39% (three-season wetness), and 29.66% (all-season wetness) relative to the normal scenario. Autumn and winter wetness decreased the NO3--N leaching in their succession seasons, while spring and summer wetness had no such effect. Soil NO3--N leaching had positive correlations with precipitation (drought scenarios: r = 0.74; wetness scenarios: r = 0.54) and soil water seepage (drought scenarios: r = 0.62; wetness scenarios: r = 0.56). Weak correlation coefficients between soil NO3--N content and NO3--N leaching were also observed especially under spring drought (r = 0.17) and summer drought (r = 0.14). However, NO3--N leaching was not limited by soil NO3--N content after the application of basal fertilizer. Fertilization plus drought or wetness increased the risk of soil NO3--N leaching. These findings will be benefit for controlling the non-point N loss of tea plantation under the background of climate change.

Suggested Citation

  • Liu, Fei & Zhu, Qing & Zhou, Zhiwen & Liao, Kaihua & Lai, Xiaoming, 2022. "Soil nitrate leaching of tea plantation and its responses to seasonal drought and wetness scenarios," Agricultural Water Management, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421006028
    DOI: 10.1016/j.agwat.2021.107325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy M. Bowles & Shady S. Atallah & Eleanor E. Campbell & Amélie C. M. Gaudin & William R. Wieder & A. Stuart Grandy, 2018. "Addressing agricultural nitrogen losses in a changing climate," Nature Sustainability, Nature, vol. 1(8), pages 399-408, August.
    2. T. L. Greaver & C. M. Clark & J. E. Compton & D. Vallano & A. F. Talhelm & C. P. Weaver & L. E. Band & J. S. Baron & E. A. Davidson & C. L. Tague & E. Felker-Quinn & J. A. Lynch & J. D. Herrick & L. L, 2016. "Key ecological responses to nitrogen are altered by climate change," Nature Climate Change, Nature, vol. 6(9), pages 836-843, September.
    3. Zhaozhi Wang & Zhiming Qi & Lulin Xue & Melissa Bukovsky & Matthew Helmers, 2015. "Modeling the impacts of climate change on nitrogen losses and crop yield in a subsurface drained field," Climatic Change, Springer, vol. 129(1), pages 323-335, March.
    4. Liang, Hao & Lv, Haofeng & Batchelor, William D. & Lian, Xiaojuan & Wang, Zhengxiang & Lin, Shan & Hu, Kelin, 2020. "Simulating nitrate and DON leaching to optimize water and N management practices for greenhouse vegetable production systems," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
    6. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choi, Eseul & DePaula, Guilherme & Kyveryga, Peter & Fey, Suzanne, 2024. "The Trade-off between Yield and Nitrogen Pollution under Excessive Rainfall: Evidence from On-farm Field Experiments in Iowa," ISU General Staff Papers 202402222018560000, Iowa State University, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Malone & Jurgen Garbrecht & Phillip Busteed & Jerry Hatfield & Dennis Todey & Jade Gerlitz & Quanxiao Fang & Matthew Sima & Anna Radke & Liwang Ma & Zhiming Qi & Huaiqing Wu & Dan Jaynes & Thom, 2020. "Drainage N Loads Under Climate Change with Winter Rye Cover Crop in a Northern Mississippi River Basin Corn-Soybean Rotation," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    2. Severini, Edoardo & Magri, Monia & Soana, Elisa & Bartoli, Marco & Faggioli, Marco & Celico, Fulvio, 2023. "Irrigation practices affect relationship between reduced nitrogen fertilizer use and improvement of river and groundwater chemistry," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    4. Daniel Cooley & Steven M. Smith, 2022. "Center Pivot Irrigation Systems as a Form of Drought Risk Mitigation in Humid Regions," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 135-171, National Bureau of Economic Research, Inc.
    5. Muhammad Amin & Mobushir Riaz Khan & Sher Shah Hassan & Muhammad Imran & Muhammad Hanif & Irfan Ahmad Baig, 2023. "Determining satellite-based evapotranspiration product and identifying relationship with other observed data in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 23-39, January.
    6. Chao Xu & Teng-Chiu Lin & Jr-Chuan Huang & Zhijie Yang & Xiaofei Liu & Decheng Xiong & Shidong Chen & Minhuang Wang & Liuming Yang & Yusheng Yang, 2022. "Microbial Biomass Is More Important than Runoff Export in Predicting Soil Inorganic Nitrogen Concentrations Following Forest Conversion in Subtropical China," Land, MDPI, vol. 11(2), pages 1-15, February.
    7. Wang, Han & Xiang, Youzhen & Liao, Zhenqi & Wang, Xin & Zhang, Xueyan & Huang, Xiangyang & Zhang, Fucang & Feng, Li, 2024. "Integrated assessment of water-nitrogen management for winter oilseed rape production in Northwest China," Agricultural Water Management, Elsevier, vol. 298(C).
    8. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    9. Giovani Preza-Fontes & Junming Wang & Muhammad Umar & Meilan Qi & Kamaljit Banger & Cameron Pittelkow & Emerson Nafziger, 2021. "Development of an Online Tool for Tracking Soil Nitrogen to Improve the Environmental Performance of Maize Production," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    10. X. Zhang & Y. Yamaguchi, 2014. "Characterization and evaluation of MODIS-derived Drought Severity Index (DSI) for monitoring the 2009/2010 drought over southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2129-2145, December.
    11. Jinsoo Hwang & Hyunjoon Kim, 2019. "Consequences of a green image of drone food delivery services: The moderating role of gender and age," Business Strategy and the Environment, Wiley Blackwell, vol. 28(5), pages 872-884, July.
    12. Yang, Wenjie & Li, Yanhang & Jia, Bingli & Liu, Lei & Yuan, Aijing & Liu, Jinshan & Qiu, Weihong, 2024. "Optimized fertilization based on fallow season precipitation and the Nutrient Expert system for dryland wheat reduced environmental risks and increased economic benefits," Agricultural Water Management, Elsevier, vol. 291(C).
    13. Rui Zhang & Taotao Chen & Daocai Chi, 2020. "Global Sensitivity Analysis of the Standardized Precipitation Evapotranspiration Index at Different Time Scales in Jilin Province, China," Sustainability, MDPI, vol. 12(5), pages 1-19, February.
    14. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    16. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    17. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    18. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    19. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    20. Eva O. Arceo-Gómez & Danae Hernández-Cortés & Alejandro López-Feldman, 2020. "Droughts and rural households’ wellbeing: evidence from Mexico," Climatic Change, Springer, vol. 162(3), pages 1197-1212, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421006028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.