IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v260y2022ics0378377421005667.html
   My bibliography  Save this article

Effects of residual film on maize root distribution, yield and water use efficiency in Northwest China

Author

Listed:
  • Chen, Pengpeng
  • Gu, Xiaobo
  • Li, Yuannong
  • Qiao, Linran
  • Li, Yupeng
  • Fang, Heng
  • Yin, Minhua
  • Zhou, Changming

Abstract

With the extensive use of plastic film, a large number of residual film accumulated in the farmland, bringing a huge negative impact on agricultural production. Studying the effect of residual film on roots is helpful to understand the damage mechanism of residual film on crop growth. Thus, a two-year field experiment was conducted with 0 (M0), 90 (M90), 180 (M180), 360 (M360), and 720 (M720) kg ha−1 residual film, and sine and logistic functions were used to simulate root growth and vertical distribution of maize. Results showed that root length decreased with residual film increasing and was more sensitive to residual film at tasseling, filling and maturity stages than at seedling and jointing stages. The results of the sine function fitting the total root length showed that the potential maximum root length was decreased and the rooting time was delayed, and the root growth time was shortened with the amount of residual film increasing. M90 had no significant effect on root length but residual film equal to or greater than 180 kg ha−1 had significant negative effects on root length. M180, M360 and M720 significantly reduced the actual total root length by 13.7%, 23.8% and 33.3%, and reduced the potential root length by 9.4%, 17.1% and 21.8%. M360 and M720 significantly shortened the growth time by 3.8% and 6.6%. The logistic function fit the vertical root distribution well. Residual film decreased the root length in deep soil and gathered roots in the soil layer near the depth of d50 at which 50% of the root length was accumulated. Residual film decreased the soil depth where 50% and 95% root length were accumulated and increased the proportion of root length in 0–30 cm soil layer. This adverse effect increased with residual film amount increasing. The dry matter of stems, leaves and ears decreased with residual film increasing. M90 reduced the above-ground dry matter insignificantly and the other treatments with residual film had significant effects. At the maturity stage, the above-ground dry matter in M90, M180, M360 and M720 was reduced by 2.4%, 14.2%, 22.2% and 29.4%, compared with M0. Residual film decreased evapotranspiration (ET), grain yield and water use efficiency (WUE) significantly except M90. ET, yield and WUE were reduced by 1.7%, 3.0% and 1.1% in M90, and 2.5%, 17.1% and 16.1% in M180, and 6.2%, 27.1% and 23.4% in M360, and 8.5%, 34.7% and 30.8% in M720, respectively. In summary, the residual film beyond 180 kg ha−1 had a significant negative effect on summer maize. This information will be useful to better understand and respond to residual film pollution and ensure safe agricultural production.

Suggested Citation

  • Chen, Pengpeng & Gu, Xiaobo & Li, Yuannong & Qiao, Linran & Li, Yupeng & Fang, Heng & Yin, Minhua & Zhou, Changming, 2022. "Effects of residual film on maize root distribution, yield and water use efficiency in Northwest China," Agricultural Water Management, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421005667
    DOI: 10.1016/j.agwat.2021.107289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421005667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Yin, Minhua & Li, Yuannong & Fang, Heng & Chen, Pengpeng, 2019. "Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth," Agricultural Water Management, Elsevier, vol. 216(C), pages 127-137.
    3. Fan, Junliang & Zheng, Jing & Wu, Lifeng & Zhang, Fucang, 2021. "Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models," Agricultural Water Management, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Wenjing & Gu, Xiaobo & Du, Yadan & Chang, Tian & Lu, Shiyu & Zheng, Xiaobo & Bai, Dongping & Song, Hui & Sun, Shikun & Cai, Huanjie, 2022. "Effects of mulching on water saving, yield increase and emission reduction for maize in China," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Guixin Zhang & Shibo Zhang & Zhenqing Xia & Mengke Wu & Jingxuan Bai & Haidong Lu, 2023. "Effects of Biodegradable Film and Polyethylene Film Residues on Soil Moisture and Maize Productivity in Dryland," Agriculture, MDPI, vol. 13(2), pages 1-17, January.
    3. Xiaolong Liu & Ruijie Shi & Wuyun Zhao & Wei Sun & Peiwen Li & Hui Li & Hua Zhang & Jiuxin Wang & Guanping Wang & Fei Dai, 2024. "Study on the Characteristics of Residual Film–Soil–Root Stubble Complex in Maize Stubble Fields of the Hexi Corridor and Establishment of a Discrete Element Model," Agriculture, MDPI, vol. 14(9), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    3. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of ridge–furrow ratio and urea type on grain yield and water productivity of rainfed winter wheat on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Yan, Shicheng & Zhuang, Qianlai & Cui, Ningbo & Guo, Li, 2021. "Interactive effects of mulching practice and nitrogen rate on grain yield, water productivity, fertilizer use efficiency and greenhouse gas emissions of rainfed summer maize in northwest China," Agricultural Water Management, Elsevier, vol. 248(C).
    5. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Wu, Lifeng & Zou, Yufeng & Zhuang, Qianlai, 2021. "Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 249(C).
    6. Pan Li & Wen Yin & Guiping Chen & Yao Guo & Zhilong Fan & Falong Hu & Fuxue Feng & Hong Fan & Wei He, 2023. "Sustainable Analysis of Maize Production under Previous Wheat Straw Returning in Arid Irrigated Areas," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
    7. Liu Yunfei & Gui Dongwei & Yin Changjun & Zhang Lei & Xue Dongping & Liu Yi & Zeng Fanjiang & Zeeshan Ahmed & Chen Xiaoping, 2023. "Estimating the Temporal and Spatial Variations in Evapotranspiration with a Nonlinear Evaporation Complementary Relationship Model in Hyper-arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 521-535, January.
    8. Liu, Xiaoli & Wang, Yandong & Zhang, Yuehe & Ren, Xiaolong & Chen, Xiaoli, 2022. "Can rainwater harvesting replace conventional irrigation for winter wheat production in dry semi-humid areas in China?," Agricultural Water Management, Elsevier, vol. 272(C).
    9. Liao, Zhenqi & Zeng, Hualiang & Fan, Junliang & Lai, Zhenlin & Zhang, Chen & Zhang, Fucang & Wang, Haidong & Cheng, Minghui & Guo, Jinjin & Li, Zhijun & Wu, Peng, 2022. "Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching," Agricultural Water Management, Elsevier, vol. 268(C).
    10. Zhiwen Song & Lei Zhao & Junguo Bi & Qingyun Tang & Guodong Wang & Yuxiang Li, 2024. "Classification of Degradable Mulch Films and Their Promotional Effects and Limitations on Agricultural Production," Agriculture, MDPI, vol. 14(8), pages 1-19, July.
    11. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
    13. Guoqiang Zhang & Bo Ming & Dongping Shen & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2021. "Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    14. Thongsouk Sompouviset & Yanting Ma & Eakkarin Sukkaew & Zhaoxia Zheng & Ai Zhang & Wei Zheng & Ziyan Li & Bingnian Zhai, 2023. "The Effects of Plastic Mulching Combined with Different Fertilizer Applications on Greenhouse Gas Emissions and Intensity, and Apple Yield in Northwestern China," Agriculture, MDPI, vol. 13(6), pages 1-23, June.
    15. Gao, Xuhua & Xie, Dong & Yang, Chong, 2021. "Effects of a PLA/PBAT biodegradable film mulch as a replacement of polyethylene film and their residues on crop and soil environment," Agricultural Water Management, Elsevier, vol. 255(C).
    16. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Zhao, Lu & Guo, Li & Du, Taisheng & Zhan, Cun & Wu, Zongjun & Wen, Shenglin & Jiang, Shouzheng, 2022. "Estimation of daily apple tree transpiration in the Loess Plateau region of China using deep learning models," Agricultural Water Management, Elsevier, vol. 273(C).
    17. Srinivasagan N. Subhashree & C. Igathinathane & Adnan Akyuz & Md. Borhan & John Hendrickson & David Archer & Mark Liebig & David Toledo & Kevin Sedivec & Scott Kronberg & Jonathan Halvorson, 2023. "Tools for Predicting Forage Growth in Rangelands and Economic Analyses—A Systematic Review," Agriculture, MDPI, vol. 13(2), pages 1-30, February.
    18. David Kincl & Pavel Formánek & Jan Vopravil & Pavel Nerušil & Ladislav Menšík & Jaroslava Janků, 2022. "Soil-conservation effect of intercrops in silage maize," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(3), pages 180-190.
    19. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    20. Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421005667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.