IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v259y2022ics0378377421005205.html
   My bibliography  Save this article

A new solution of high-efficiency rainwater irrigation mode for water management in apple plantation: Design and application

Author

Listed:
  • Sun, Miao
  • Gao, Xuerui
  • Zhang, Yulin
  • Song, Xiaolin
  • Zhao, Xining

Abstract

Due to the lack of stable irrigation water sources and low rainwater utilization efficiency, soil water deficit has become the main factor restricting the sustainable development of the apple industry in the Loess Plateau. The scientific and efficient use of rainwater for irrigation may provide a new solution to alleviate the regional soil water deficit. Rainwater is the only water source for the growth of apple trees, and whether it can be used as a stable and sustainable irrigation water source should be quantitatively considered. At present, there is still a lack of quantitative data to support whether rainwater can meet the irrigation needs of apple orchards. In this research, rainwater harvesting technology is combined with a solar intelligent irrigation system equipped with soil moisture sensors to form a high-efficiency rainwater irrigation (HRI) mode suitable for dryland apple orchards. Through practical application, this study found that HRI mode can effectively improve the soil drought of 0–200 cm and keep the soil water content in a relatively stable range during the apple growth period. Compared with only using rainwater harvesting technology and combined with traditional irrigation methods (SDI), HRI mode can increase apple yield by 56.2% and 22.0%, WUE by 40.4% and 12.6%, respectively. With the increase of apple yield, HRI mode has good economic feasibility, and its economic recovery period is 2 years. On the regional scale, this study selected irrigation guarantee rate and solar energy resources as evaluation indicators to further divide the areas suitable for rainwater irrigation in apple-cultivating region on the Loess Plateau. The area where the irrigation guarantee rate of rainwater was greater than 75% is 1.22 × 107 m2, accounting for 47.6% of the total area. This means that apple production in the Loess Plateau can increase by approximately 549.8 tons/year, save 1.5 × 104 m3 of irrigation water resources, and increase WUE by about 33.4%. Under the two different future climate scenarios (RCP 2.6 and RCP 8.5), the area accounted for 49.7% and 57.2% respectively, which was higher than the current situation. The areas with high rainwater irrigation guarantee rates are mostly concentrated in the central and southern parts of the apple-cultivating region. To maintain the sustainable development of the orchard ecological environment, areas with insufficient rainwater should assist other water management measures. In conclusion, high-efficiency rainwater irrigation can effectively alleviate the water contradiction in apple-cultivating region. In future agricultural water management, more attention should be paid to precision rainwater irrigation to ensure the coordinated development of agricultural economy and ecological environment.

Suggested Citation

  • Sun, Miao & Gao, Xuerui & Zhang, Yulin & Song, Xiaolin & Zhao, Xining, 2022. "A new solution of high-efficiency rainwater irrigation mode for water management in apple plantation: Design and application," Agricultural Water Management, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:agiwat:v:259:y:2022:i:c:s0378377421005205
    DOI: 10.1016/j.agwat.2021.107243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421005205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nam, Suyun & Kang, Seonghwan & Kim, Jongyun, 2020. "Maintaining a constant soil moisture level can enhance the growth and phenolic content of sweet basil better than fluctuating irrigation," Agricultural Water Management, Elsevier, vol. 238(C).
    2. Yu, Yingdong & Liu, Jiahong & Wang, Hao & Liu, Miao, 2011. "Assess the potential of solar irrigation systems for sustaining pasture lands in arid regions – A case study in Northwestern China," Applied Energy, Elsevier, vol. 88(9), pages 3176-3182.
    3. Song, Xiaolin & Gao, Xiaodong & Zhao, Xining & Wu, Pute & Dyck, Miles, 2017. "Spatial distribution of soil moisture and fine roots in rain-fed apple orchards employing a Rainwater Collection and Infiltration (RWCI) system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 184(C), pages 170-177.
    4. Oron, Gideon & Campos, Claudia & Gillerman, Leonid & Salgot, Miquel, 1999. "Wastewater treatment, renovation and reuse for agricultural irrigation in small communities," Agricultural Water Management, Elsevier, vol. 38(3), pages 223-234, January.
    5. Mariko Fujisawa & Kazuhiko Kobayashi, 2011. "Climate change adaptation practices of apple growers in Nagano, Japan," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(8), pages 865-877, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongwei Liang & Tao Zou & Yupeng Zhang & Jinrui Xiao & Xiaochu Liu, 2022. "Sprinkler Drip Infiltration Quality Prediction for Moisture Space Distribution Using RSAE-NPSO," Agriculture, MDPI, vol. 12(5), pages 1-32, May.
    2. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    2. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Shange, Raymon & Martin, Richard & Khan, Victor & Daniels, Kwesi & Hunter, George X. & Johnson, Gwendolyn J. & Musser, Steve & Puckett, William & Hill, Walter A., 2014. "Extending Sustainable Irrigation Opportunities To Socially And Historically Disadvantaged Farmers In The Alabama Black Belt To Support Commercial-Level Production," Professional Agricultural Workers Journal (PAWJ), Professional Agricultural Workers Conference, vol. 1(2), pages 1-10.
    4. Al-Qthanin, Rahmah N. & AbdAlghafar, Ibrahim M. & Mahmoud, Doaa S. & Fikry, Ahmed M. & AlEnezi, Norah A. & Elesawi, Ibrahim Eid & AbuQamar, Synan F. & Gad, Mohamed M. & El-Tarabily, Khaled A., 2024. "Impact of rice straw mulching on water consumption and productivity of orange trees [Citrus sinensis (L.) Osbeck]," Agricultural Water Management, Elsevier, vol. 298(C).
    5. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Cai, Yaohui & Wu, Pute & Gao, Xiaodong & Zhu, Delan & Zhang, Lin & Dai, Zhiguang & Chau, Henry Wai & Zhao, Xining, 2022. "Subsurface irrigation with ceramic emitters: Evaluating soil water effects under multiple precipitation scenarios," Agricultural Water Management, Elsevier, vol. 272(C).
    7. Chaiprapat, S. & Sdoodee, S., 2007. "Effects of wastewater recycling from natural rubber smoked sheet production on economic crops in southern Thailand," Resources, Conservation & Recycling, Elsevier, vol. 51(3), pages 577-590.
    8. Olsson, Alexander & Campana, Pietro Elia & Lind, Mårten & Yan, Jinyue, 2014. "Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands," Applied Energy, Elsevier, vol. 136(C), pages 1145-1154.
    9. Zhang, Binbin & Su, Shunshun & Duan, Chenxiao & Feng, Hao & Chau, Henry Wai & He, Jianqiang & Li, Yi & Hill, Robert Lee & Wu, Shufang & Zou, Yufeng, 2022. "Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-," Agricultural Water Management, Elsevier, vol. 260(C).
    10. Closas, Alvar & Rap, Edwin, 2017. "Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations," Energy Policy, Elsevier, vol. 104(C), pages 33-37.
    11. Yu, Yingdong & Liu, Jiahong & Wang, Ying & Xiang, Chenyao & Zhou, Jinjun, 2018. "Practicality of using solar energy for cassava irrigation in the Guangxi Autonomous Region, China," Applied Energy, Elsevier, vol. 230(C), pages 31-41.
    12. Junjie Yan & Guangpeng Zhang & Xiaoya Deng & Hongbo Ling & Hailiang Xu & Bin Guo, 2019. "Does Climate Change or Human Activity Lead to the Degradation in the Grassland Ecosystem in a Mountain-Basin System in an Arid Region of China?," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    13. Akponikpè, P.B. Irénikatché & Wima, Koffi & Yacouba, Hamma & Mermoud, André, 2011. "Reuse of domestic wastewater treated in macrophyte ponds to irrigate tomato and eggplant in semi-arid West-Africa: Benefits and risks," Agricultural Water Management, Elsevier, vol. 98(5), pages 834-840, March.
    14. Xuerui Gao & Ai Wang & Yong Zhao & Xining Zhao & Miao Sun & Junkai Du & Chengcheng Gang, 2018. "Study on Water Suitability of Apple Plantations in the Loess Plateau under Climate Change," IJERPH, MDPI, vol. 15(11), pages 1-21, November.
    15. Zhang, Binbin & Yan, Sihui & Li, Bin & Wu, Shufang & Feng, Hao & Gao, Xiaodong & Song, Xiaolin & Siddique, Kadambot H.M., 2023. "Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards," Agricultural Water Management, Elsevier, vol. 288(C).
    16. Song, Xiaolin & Wu, Pute & Gao, Xiaodong & Yao, Jie & Zou, Yufeng & Zhao, Xining & Siddique, Kadambot H.M. & Hu, Wei, 2020. "Rainwater collection and infiltration (RWCI) systems promote deep soil water and organic carbon restoration in water-limited sloping orchards," Agricultural Water Management, Elsevier, vol. 242(C).
    17. Salvatore Campisi-Pinto & Jan Adamowski & Gideon Oron, 2012. "Forecasting Urban Water Demand Via Wavelet-Denoising and Neural Network Models. Case Study: City of Syracuse, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3539-3558, September.
    18. Gao, Xuerui & Liu, Jiahong & Zhang, Jun & Yan, Jinyue & Bao, Shujun & Xu, He & Qin, Tao, 2013. "Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table," Applied Energy, Elsevier, vol. 105(C), pages 182-193.
    19. Allouhi, A. & Buker, M.S. & El-houari, H. & Boharb, A. & Benzakour Amine, M. & Kousksou, T. & Jamil, A., 2019. "PV water pumping systems for domestic uses in remote areas: Sizing process, simulation and economic evaluation," Renewable Energy, Elsevier, vol. 132(C), pages 798-812.
    20. Ding, Wenbin & Wang, Fei & Dong, Yunyun & Jin, Kai & Cong, Chenyu & Han, Jianqiao & Ge, Wenyan, 2021. "Effects of rainwater harvesting system on soil moisture in rain-fed orchards on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:259:y:2022:i:c:s0378377421005205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.