IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v245y2021ics037837742032182x.html
   My bibliography  Save this article

Potential effects of arbuscular mycorrhizal fungi in mitigating the salinity of treated wastewater in young olive plants (Olea europaea L. cv. Chetoui)

Author

Listed:
  • Ben Hassena, Ameni
  • Zouari, Mohamed
  • Trabelsi, Lina
  • Decou, Raphaël
  • Ben Amar, Fathi
  • Chaari, Anissa
  • Soua, Nabil
  • Labrousse, Pascal
  • Khabou, Wahid
  • Zouari, Nacim

Abstract

The reuse of treated wastewater for olive irrigation is becoming a common practice in areas with limited water resources. However, this water may contain high level of salts (Na+ and Cl−) that could affect plant performances when used for a long period. In order to enhance the tolerance of plants to salt stress induced by treated wastewater, the application of arbuscular mycorrhizal fungi (AMF) may be a suitable solution. In this study, the ability of different AMF inoculums to improve young olive plants (Olea europaea L. cv. Chetoui) performances under long term irrigation with treated wastewater was studied. One-year-old olive trees inoculated with Glomus deserticola and/or Gigaspora margarita were irrigated with treated wastewater for one year. As compared to plants irrigated with tap water, treated wastewater irrigation caused a significant decrease in relative water content (RWC), total fresh and dry weights, gas exchange parameters, and chlorophyll and starch contents. Nevertheless, a significant increase in Na+ and Cl−, proline, soluble sugars, total polyphenols as well as flavonoids contents was observed under treated wastewater irrigation. Interestingly, colonization with different AMF inoculums, particularly the 1:1 mixture of G. deserticola and G. margarita, alleviated the negative effect of saline treated wastewater on young olive plants and significantly improved the above parameters. In fact, mycorrhizal symbiosis decreased the Na+ and Cl− contents and improved the RWC, the total fresh and dry weights and the photosynthetic activity. Furthermore, mycorrhizal plants showed higher concentrations of proline and soluble sugars as well as higher antioxidant defense systems as compared to the non-inoculated plants.

Suggested Citation

  • Ben Hassena, Ameni & Zouari, Mohamed & Trabelsi, Lina & Decou, Raphaël & Ben Amar, Fathi & Chaari, Anissa & Soua, Nabil & Labrousse, Pascal & Khabou, Wahid & Zouari, Nacim, 2021. "Potential effects of arbuscular mycorrhizal fungi in mitigating the salinity of treated wastewater in young olive plants (Olea europaea L. cv. Chetoui)," Agricultural Water Management, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:agiwat:v:245:y:2021:i:c:s037837742032182x
    DOI: 10.1016/j.agwat.2020.106635
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742032182X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chartzoulakis, K.S., 2005. "Salinity and olive: Growth, salt tolerance, photosynthesis and yield," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 108-121, September.
    2. Ghrab, Mohamed & Gargouri, Kamel & Bentaher, Hatem & Chartzoulakis, Kostas & Ayadi, Mohamed & Ben Mimoun, Mehdi & Masmoudi, Mohamed Moncef & Ben Mechlia, Netij & Psarras, Georgios, 2013. "Water relations and yield of olive tree (cv. Chemlali) in response to partial root-zone drying (PRD) irrigation technique and salinity under arid climate," Agricultural Water Management, Elsevier, vol. 123(C), pages 1-11.
    3. Valdés, R. & Ochoa, J. & Franco, J.A. & Sánchez-Blanco, M.J. & Bañón, S., 2015. "Saline irrigation scheduling for potted geranium based on soil electrical conductivity and moisture sensors," Agricultural Water Management, Elsevier, vol. 149(C), pages 123-130.
    4. Nicolás, E. & Alarcón, JJ & Mounzer, O. & Pedrero, F. & Nortes, PA & Alcobendas, R. & Romero-Trigueros, C. & Bayona, JM & Maestre-Valero, JF, 2016. "Long-term physiological and agronomic responses of mandarin trees to irrigation with saline reclaimed water," Agricultural Water Management, Elsevier, vol. 166(C), pages 1-8.
    5. Ben Hassena, Ameni & Zouari, Mohamed & Trabelsi, Lina & Khabou, Wahid & Zouari, Nacim, 2018. "Physiological improvements of young olive tree (Olea europaea L. cv. Chetoui) under short term irrigation with treated wastewater," Agricultural Water Management, Elsevier, vol. 207(C), pages 53-58.
    6. Elfanssi, Saloua & Ouazzani, Naaila & Mandi, Laila, 2018. "Soil properties and agro-physiological responses of alfalfa (Medicago sativa L.) irrigated by treated domestic wastewater," Agricultural Water Management, Elsevier, vol. 202(C), pages 231-240.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malika Mahmoudi & Mohamed Naceur Khelil & Sarra Hechmi & Basma Latrech & Rim Ghrib & Abdelhamid Boujlben & Samir Yacoubi, 2022. "Effect of Surface and Subsurface Drip Irrigation with Treated Wastewater on Soil and Water Productivity of Okra ( Abemoschus esculentus ) Crop in Semi-Arid Region of Tunisia," Agriculture, MDPI, vol. 12(12), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.
    3. Konstantina Fotia & George Nanos & Pantelis Barouchas & Markos Giannelos & Aikaterini Linardi & Aikaterini Vallianatou & Paraskevi Mpeza & Ioannis Tsirogiannis, 2022. "Growth Development, Physiological Status and Water Footprint Assessment of Nursery Young Olive Trees ( Olea europaea L. ‘Konservolea’) Irrigated with Urban Treated Wastewater," Resources, MDPI, vol. 11(5), pages 1-14, April.
    4. Chehab, Hechmi & Tekaya, Meriem & Hajlaoui, Hichem & Abdelhamid, Sofiane & Gouiaa, Mohamed & Sfina, Hanene & Chihaoui, Badreddine & Boujnah, Dalenda & Mechri, Beligh, 2020. "Complementary irrigation with saline water and soil organic amendments modified soil salinity, leaf Na+, productivity and oil phenols of olive trees (cv. Chemlali) grown under semiarid conditions," Agricultural Water Management, Elsevier, vol. 237(C).
    5. Vivaldi, Gaetano Alessandro & Camposeo, Salvatore & Romero-Trigueros, Cristina & Pedrero, Francisco & Caponio, Gabriele & Lopriore, Giuseppe & Álvarez, Sara, 2021. "Physiological responses of almond trees under regulated deficit irrigation using saline and desalinated reclaimed water," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Pitt, T. & Petrie, P.R., 2020. "Impact of long-term recycled water irrigation on crop yield and soil chemical properties," Agricultural Water Management, Elsevier, vol. 237(C).
    7. Trabelsi, Lina & Gargouri, Kamel & Ayadi, Mohamed & Mbadra, Chaker & Ben Nasr, Mohamed & Ben Mbarek, Hadda & Ghrab, Mohamed & Ben Ahmed, Gouta & Kammoun, Yasmine & Loukil, Emna & Maktouf, Sameh & Khli, 2022. "Impact of drought and salinity on olive potential yield, oil and fruit qualities (cv. Chemlali) in an arid climate," Agricultural Water Management, Elsevier, vol. 269(C).
    8. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    9. Santos, Berta de los & Medina, Eduardo & Brenes, Manuel & Aguado, Ana & García, Pedro & Romero, Concepción, 2020. "Chemical composition of table olive wastewater and its relationship with the bio-fortifying capacity of tomato (Solanum lycopersicum L.) plants," Agricultural Water Management, Elsevier, vol. 227(C).
    10. Al-Absi, K.M. & Al-Nasir, F.M. & Mahadeen, A.Y., 2009. "Mineral content of three olive cultivars irrigated with treated industrial wastewater," Agricultural Water Management, Elsevier, vol. 96(4), pages 616-626, April.
    11. Russo, David & Laufer, Asher & Bar-Tal, Asher, 2020. "Improving water uptake by trees planted on a clayey soil and irrigated with low-quality water by various management means: A numerical study," Agricultural Water Management, Elsevier, vol. 229(C).
    12. Federica Angilè & Gaetano Alessandro Vivaldi & Chiara Roberta Girelli & Laura Del Coco & Gabriele Caponio & Giuseppe Lopriore & Francesco Paolo Fanizzi & Salvatore Camposeo, 2022. "Treated Unconventional Waters Combined with Different Irrigation Strategies Affect 1 H NMR Metabolic Profile of a Monovarietal Extra Virgin Olive Oil," Sustainability, MDPI, vol. 14(3), pages 1-20, January.
    13. Incrocci, Luca & Marzialetti, Paolo & Incrocci, Giorgio & Di Vita, Andrea & Balendonck, Jos & Bibbiani, Carlo & Spagnol, Serafino & Pardossi, Alberto, 2019. "Sensor-based management of container nursery crops irrigated with fresh or saline water," Agricultural Water Management, Elsevier, vol. 213(C), pages 49-61.
    14. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    15. Sebastián Bañón & Jesús Ochoa & Daniel Bañón & María Fernanda Ortuño & María Jesús Sánchez-Blanco, 2020. "Assessment of the Combined Effect of Temperature and Salinity on the Outputs of Soil Dielectric Sensors in Coconut Fiber," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    16. Imbernón-Mulero, Alberto & Gallego-Elvira, Belén & Martínez-Alvarez, Victoriano & Acosta, José A. & Antolinos, Vera & Robles, Juan M. & Navarro, Josefa M. & Maestre-Valero, José F., 2024. "Irrigation of young grapefruits with desalinated seawater: Agronomic and economic outcomes," Agricultural Water Management, Elsevier, vol. 299(C).
    17. Xia Li & Xun Li & Yang Li, 2022. "Research on reclaimed water from the past to the future: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 112-137, January.
    18. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    19. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).
    20. Jemal Fito & Stijn W. H. Hulle, 2021. "Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2949-2972, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:245:y:2021:i:c:s037837742032182x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.