IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v231y2020ics0378377418320080.html
   My bibliography  Save this article

Ridge-furrow planting promotes wheat grain yield and water productivity in the irrigated sub-humid region of China

Author

Listed:
  • Liu, Yang
  • Zhang, Xueling
  • Xi, Luoyan
  • Liao, Yuncheng
  • Han, Juan

Abstract

Determining methods for increasing irrigation water productivity is important for sustaining high wheat grain yields in the irrigated region of the Loess Plateau in China. Plastic-covered ridge and furrow planting has been widely applied in dryland farming, as it markedly increases precipitation productivity and crop yields. However, whether this planting system can significantly increase irrigation water productivity and whether it can reduce the irrigation volume for high-yielding wheat production in irrigated regions of the Loess Plateau are unclear. In the present study, plastic-covered ridge and furrow planting and traditional flatbed planting were performed at four irrigation levels. The objective was to investigate whether applying plastic-covered ridge and furrow planting to an irrigated farmland system could reduce the irrigation water requirements and increase water productivity for high-yielding wheat production. The results suggested that plastic-covered ridge and furrow planting significantly increased soil moisture content and increased both grain yield and water productivity of wheat. At the 0, 400, 1200, and 2000 m3 ha−1 irrigation levels, compared with that resulting from traditional flatbed planting, the grain yield resulting from plastic-covered ridge and furrow planting was 51.7 %, 64.8 %, 25.5 %, and 5.84 % greater, respectively. At the high-grain-yield level (6–7 t ha−1), the plastic-covered ridge and furrow planting system at 1200 m3 ha−1 irrigation conserved 40 % of irrigation water during wheat production. And it coordinated the relationships among grain yield, quality, water protuctivity and for wheat production. These findings show that the plastic-covered ridge and furrow planting system with 1200 m3 ha-1 irrigation is suitable for sustainable high-yielding wheat production in the irrigated regions of the Loess Plateau of China.

Suggested Citation

  • Liu, Yang & Zhang, Xueling & Xi, Luoyan & Liao, Yuncheng & Han, Juan, 2020. "Ridge-furrow planting promotes wheat grain yield and water productivity in the irrigated sub-humid region of China," Agricultural Water Management, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377418320080
    DOI: 10.1016/j.agwat.2019.105935
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418320080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Xiaolong & Jia, Zhikuan & Chen, Xiaoli, 2008. "Rainfall concentration for increasing corn production under semiarid climate," Agricultural Water Management, Elsevier, vol. 95(12), pages 1293-1302, December.
    2. Liuyang Yao & Minjuan Zhao & Tao Xu, 2017. "China’s Water-Saving Irrigation Management System: Policy, Implementation, and Challenge," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
    3. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    4. Chen, Chao & Wang, Enli & Yu, Qiang, 2010. "Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1175-1184, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulius Astrauskas & Gediminas Staugaitis, 2022. "Digital Technologies Determination Effectiveness for the Productivity of Organic Winter Wheat Production in Low Soil Performance Indicator," Agriculture, MDPI, vol. 12(4), pages 1-12, March.
    2. Xin Zhang & Jianheng Zhang & Jiaxin Xue & Guiyan Wang, 2023. "Improving Wheat Yield and Water-Use Efficiency by Optimizing Irrigations in Northern China," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    3. Liu, Xiaoli & Wang, Yandong & Zhang, Yuehe & Ren, Xiaolong & Chen, Xiaoli, 2022. "Can rainwater harvesting replace conventional irrigation for winter wheat production in dry semi-humid areas in China?," Agricultural Water Management, Elsevier, vol. 272(C).
    4. Zhang, Yan & Qiang, Shengcai & Zhang, Guangxin & Sun, Min & Wen, Xiaoxia & Liao, Yuncheng & Gao, Zhiqiang, 2023. "Effects of ridge–furrow supplementary irrigation on water use efficiency and grain yield of winter wheat in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chun & Dong, Zhaoyun & Guo, Qin & Hu, Zhilin & Li, Juan & Wei, Ting & Ding, Ruixia & Cai, Tie & Ren, Xiaolong & Han, Qingfang & Zhang, Peng & Jia, Zhikuan, 2022. "Ridge–furrow rainwater harvesting combined with supplementary irrigation: Water-saving and yield-maintaining mode for winter wheat in a semiarid region based on 8-year in-situ experiment," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Bai, Huiqing & Wang, Jing & Fang, Quanxiao & Huang, Binxiang, 2020. "Does a trade-off between yield and efficiency reduce water and nitrogen inputs of winter wheat in the North China Plain?," Agricultural Water Management, Elsevier, vol. 233(C).
    3. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    4. Mr. Emmanuel Momolu Pope & Prof. Wilson Opile & Dr. Lucas Ngode & Dr. Chepkoech Emmy, 2023. "Assessment of Upland Rice Production Constraints and Farmers’ Preferred Varieties in Liberia," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(2), pages 1307-1322, February.
    5. Samuthirapandi Subburaj & Thiyagarajan Thulasinathan & Viswabharathy Sakthivel & Bharathi Ayyenar & Rohit Kambale & Veera Ranjani Rajagopalan & Sudha Manickam & Raghu Rajasekaran & Gopalakrishnan Chel, 2024. "Genetic Enhancement of Blast and Bacterial Leaf Blight Resistance in Rice Variety CO 51 through Marker-Assisted Selection," Agriculture, MDPI, vol. 14(5), pages 1-20, April.
    6. F. Jorge Bornemann & David P. Rowell & Barbara Evans & Dan J. Lapworth & Kamazima Lwiza & David M.J. Macdonald & John H. Marsham & Kindie Tesfaye & Matthew J. Ascott & Celia Way, 2019. "Future changes and uncertainty in decision-relevant measures of East African climate," Climatic Change, Springer, vol. 156(3), pages 365-384, October.
    7. Purola, Tuomo & Lehtonen, Heikki, 2020. "Evaluating profitability of soil-renovation investments under crop rotation constraints in Finland," Agricultural Systems, Elsevier, vol. 180(C).
    8. Nina Repar & Pierrick Jan & Thomas Nemecek & Dunja Dux & Martina Alig Ceesay & Reiner Doluschitz, 2016. "Local versus Global Environmental Performance of Dairying and Their Link to Economic Performance: A Case Study of Swiss Mountain Farms," Sustainability, MDPI, vol. 8(12), pages 1-19, December.
    9. Hampf, Anna C. & Carauta, Marcelo & Latynskiy, Evgeny & Libera, Affonso A.D. & Monteiro, Leonardo & Sentelhas, Paulo & Troost, Christian & Berger, Thomas & Nendel, Claas, 2018. "The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 1-13.
    10. Zecca, Francesco & D’Errico, Marco, 2021. "Food security and land use: The Ethiopian case," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 23(2), July.
    11. Catarina D. Melo & Cristiana S. A. M. Maduro Dias & Sophie Wallon & Alfredo E. S. Borba & João Madruga & Paulo A. V. Borges & Maria T. Ferreira & Rui B. Elias, 2022. "Influence of Climate Variability and Soil Fertility on the Forage Quality and Productivity in Azorean Pastures," Agriculture, MDPI, vol. 12(3), pages 1-18, March.
    12. Lian, Yanhao & Ali, Shahzad & Zhang, Xudong & Wang, Tianlu & Liu, Qi & Jia, Qianmin & Jia, Zhikuan & Han, Qingfang, 2016. "Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas," Agricultural Water Management, Elsevier, vol. 178(C), pages 137-147.
    13. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    14. Rong Ma & Ke Li & Yixin Guo & Bo Zhang & Xueli Zhao & Soeren Linder & ChengHe Guan & Guoqian Chen & Yujie Gan & Jing Meng, 2021. "Mitigation potential of global ammonia emissions and related health impacts in the trade network," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    15. Fritz, Steffen & See, Linda & Bayas, Juan Carlos Laso & Waldner, François & Jacques, Damien & Becker-Reshef, Inbal & Whitcraft, Alyssa & Baruth, Bettina & Bonifacio, Rogerio & Crutchfield, Jim & Rembo, 2019. "A comparison of global agricultural monitoring systems and current gaps," Agricultural Systems, Elsevier, vol. 168(C), pages 258-272.
    16. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    17. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Ma, Xiangcheng & Yan, Zhang & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 198-211.
    18. Anika Reetsch & Kai Schwärzel & Christina Dornack & Shadrack Stephene & Karl-Heinz Feger, 2020. "Optimising Nutrient Cycles to Improve Food Security in Smallholder Farming Families—A Case Study from Banana-Coffee-Based Farming in the Kagera Region, NW Tanzania," Sustainability, MDPI, vol. 12(21), pages 1-34, November.
    19. Nakayama, Tadanobu & Osako, Masahiro, 2023. "Development of a process-based eco-hydrology model for evaluating the spatio-temporal dynamics of macro- and micro-plastics for the whole of Japan," Ecological Modelling, Elsevier, vol. 476(C).
    20. Chen, Keyuan & Ali, Shahzad & Chen, Yanyun & Manzoor, & Sohail, Amir & Jan, Amanullah & Inamullah, & Fahad, Shah, 2018. "Effect of ridge-covering mulching materials on hormonal changes, antioxidative enzyme activities and production of maize in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 204(C), pages 281-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377418320080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.