IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v231y2020ics0378377418320080.html
   My bibliography  Save this article

Ridge-furrow planting promotes wheat grain yield and water productivity in the irrigated sub-humid region of China

Author

Listed:
  • Liu, Yang
  • Zhang, Xueling
  • Xi, Luoyan
  • Liao, Yuncheng
  • Han, Juan

Abstract

Determining methods for increasing irrigation water productivity is important for sustaining high wheat grain yields in the irrigated region of the Loess Plateau in China. Plastic-covered ridge and furrow planting has been widely applied in dryland farming, as it markedly increases precipitation productivity and crop yields. However, whether this planting system can significantly increase irrigation water productivity and whether it can reduce the irrigation volume for high-yielding wheat production in irrigated regions of the Loess Plateau are unclear. In the present study, plastic-covered ridge and furrow planting and traditional flatbed planting were performed at four irrigation levels. The objective was to investigate whether applying plastic-covered ridge and furrow planting to an irrigated farmland system could reduce the irrigation water requirements and increase water productivity for high-yielding wheat production. The results suggested that plastic-covered ridge and furrow planting significantly increased soil moisture content and increased both grain yield and water productivity of wheat. At the 0, 400, 1200, and 2000 m3 ha−1 irrigation levels, compared with that resulting from traditional flatbed planting, the grain yield resulting from plastic-covered ridge and furrow planting was 51.7 %, 64.8 %, 25.5 %, and 5.84 % greater, respectively. At the high-grain-yield level (6–7 t ha−1), the plastic-covered ridge and furrow planting system at 1200 m3 ha−1 irrigation conserved 40 % of irrigation water during wheat production. And it coordinated the relationships among grain yield, quality, water protuctivity and for wheat production. These findings show that the plastic-covered ridge and furrow planting system with 1200 m3 ha-1 irrigation is suitable for sustainable high-yielding wheat production in the irrigated regions of the Loess Plateau of China.

Suggested Citation

  • Liu, Yang & Zhang, Xueling & Xi, Luoyan & Liao, Yuncheng & Han, Juan, 2020. "Ridge-furrow planting promotes wheat grain yield and water productivity in the irrigated sub-humid region of China," Agricultural Water Management, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377418320080
    DOI: 10.1016/j.agwat.2019.105935
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418320080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liuyang Yao & Minjuan Zhao & Tao Xu, 2017. "China’s Water-Saving Irrigation Management System: Policy, Implementation, and Challenge," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
    2. Ren, Xiaolong & Jia, Zhikuan & Chen, Xiaoli, 2008. "Rainfall concentration for increasing corn production under semiarid climate," Agricultural Water Management, Elsevier, vol. 95(12), pages 1293-1302, December.
    3. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    4. Chen, Chao & Wang, Enli & Yu, Qiang, 2010. "Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1175-1184, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulius Astrauskas & Gediminas Staugaitis, 2022. "Digital Technologies Determination Effectiveness for the Productivity of Organic Winter Wheat Production in Low Soil Performance Indicator," Agriculture, MDPI, vol. 12(4), pages 1-12, March.
    2. Zhang, Yan & Qiang, Shengcai & Zhang, Guangxin & Sun, Min & Wen, Xiaoxia & Liao, Yuncheng & Gao, Zhiqiang, 2023. "Effects of ridge–furrow supplementary irrigation on water use efficiency and grain yield of winter wheat in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Xin Zhang & Jianheng Zhang & Jiaxin Xue & Guiyan Wang, 2023. "Improving Wheat Yield and Water-Use Efficiency by Optimizing Irrigations in Northern China," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    4. Liu, Xiaoli & Wang, Yandong & Zhang, Yuehe & Ren, Xiaolong & Chen, Xiaoli, 2022. "Can rainwater harvesting replace conventional irrigation for winter wheat production in dry semi-humid areas in China?," Agricultural Water Management, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chun & Dong, Zhaoyun & Guo, Qin & Hu, Zhilin & Li, Juan & Wei, Ting & Ding, Ruixia & Cai, Tie & Ren, Xiaolong & Han, Qingfang & Zhang, Peng & Jia, Zhikuan, 2022. "Ridge–furrow rainwater harvesting combined with supplementary irrigation: Water-saving and yield-maintaining mode for winter wheat in a semiarid region based on 8-year in-situ experiment," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Bai, Huiqing & Wang, Jing & Fang, Quanxiao & Huang, Binxiang, 2020. "Does a trade-off between yield and efficiency reduce water and nitrogen inputs of winter wheat in the North China Plain?," Agricultural Water Management, Elsevier, vol. 233(C).
    3. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    4. Westhoek, Henk & Ingram, John & van Berkum, Siemen & Hajer, Maarten, 2015. "The European food system and natural resources: Impacts and Options," 148th Seminar, November 30-December 1, 2015, The Hague, The Netherlands 229279, European Association of Agricultural Economists.
    5. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    6. Hisham Eldardiry & Emad Habib & David M. Borrok, 2020. "Accounting for Inter-Annual and Seasonal Variability in Assessment of Water Supply Stress: Perspectives from a humid region in the USA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2517-2534, June.
    7. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    8. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    9. Thomas M. Koutsos & Georgios C. Menexes & Andreas P. Mamolos, 2021. "The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    10. Mr. Emmanuel Momolu Pope & Prof. Wilson Opile & Dr. Lucas Ngode & Dr. Chepkoech Emmy, 2023. "Assessment of Upland Rice Production Constraints and Farmers’ Preferred Varieties in Liberia," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(2), pages 1307-1322, February.
    11. Samuthirapandi Subburaj & Thiyagarajan Thulasinathan & Viswabharathy Sakthivel & Bharathi Ayyenar & Rohit Kambale & Veera Ranjani Rajagopalan & Sudha Manickam & Raghu Rajasekaran & Gopalakrishnan Chel, 2024. "Genetic Enhancement of Blast and Bacterial Leaf Blight Resistance in Rice Variety CO 51 through Marker-Assisted Selection," Agriculture, MDPI, vol. 14(5), pages 1-20, April.
    12. F. Jorge Bornemann & David P. Rowell & Barbara Evans & Dan J. Lapworth & Kamazima Lwiza & David M.J. Macdonald & John H. Marsham & Kindie Tesfaye & Matthew J. Ascott & Celia Way, 2019. "Future changes and uncertainty in decision-relevant measures of East African climate," Climatic Change, Springer, vol. 156(3), pages 365-384, October.
    13. Purola, Tuomo & Lehtonen, Heikki, 2020. "Evaluating profitability of soil-renovation investments under crop rotation constraints in Finland," Agricultural Systems, Elsevier, vol. 180(C).
    14. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    15. Yibo Luan & Wenquan Zhu & Xuefeng Cui & Günther Fischer & Terence P. Dawson & Peijun Shi & Zhenke Zhang, 2019. "Cropland yield divergence over Africa and its implication for mitigating food insecurity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 707-734, June.
    16. Zheng, Huifang & Mei, Peipei & Wang, Wending & Yin, Yulong & Li, Haojie & Zheng, Mengyao & Ou, Xingqi & Cui, Zhenling, 2023. "Effects of super absorbent polymer on crop yield, water productivity and soil properties: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    18. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    19. Razmavaran, Mohammad Hadi & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2024. "Water footprint and production of rain-fed saffron under different planting methods with ridge plastic mulch and pre-flowering irrigation in a semi-arid region," Agricultural Water Management, Elsevier, vol. 291(C).
    20. Nina Repar & Pierrick Jan & Thomas Nemecek & Dunja Dux & Martina Alig Ceesay & Reiner Doluschitz, 2016. "Local versus Global Environmental Performance of Dairying and Their Link to Economic Performance: A Case Study of Swiss Mountain Farms," Sustainability, MDPI, vol. 8(12), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377418320080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.