IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v282y2023ics0378377423001555.html
   My bibliography  Save this article

Effects of super absorbent polymer on crop yield, water productivity and soil properties: A global meta-analysis

Author

Listed:
  • Zheng, Huifang
  • Mei, Peipei
  • Wang, Wending
  • Yin, Yulong
  • Li, Haojie
  • Zheng, Mengyao
  • Ou, Xingqi
  • Cui, Zhenling

Abstract

Super absorbent polymer (SAP) is well recognized to be one of the potential technologies for improving crop yields and water productivity (WP). However, the effects of SAP on crop yields and WP remain inconsistent and vary with environment and application conditions. In this work we conducted a meta-analysis of 1504 paired data points from 310 papers published before July 2022 to evaluate the effect of SAP on crop yield and WP considering SAP attributes, initial soil properties, and experimental conditions. The SAP addition to soil resulted in average increases of 12.8% and 17.2% on yield and WP respectively. Increases in yield and WP after SAP application were the highest in tuber crops, while the greatest economic benefits were observed in vegetable crops. The increase in WP was higher in rainfed conditions (18.3%) than in irrigated conditions (14.8%). The highest improvement in WP was observed in the SAP with organic-inorganic hybrid compound types, the banding/hole application method, and the fine-grained structure. In addition the effectiveness of WP response to SAP significantly positively correlated with the initial soil pH and the soil bulk density, and was negatively correlated with N fertilizer rates, water supply, initial soil organic matter (SOM) and total nitrogen. The improvement in WP was closely related to the increased in water stable aggregates (WSA), soil porosity, SOM, available nitrogen, phosphorus and potassium after SAP application. These results suggest that the effects of SAP application on crop yield and WP are dependent on soil properties. By integrating the impacts of environmental conditions, our findings can help to tailor-make SAP application measures for different environmental conditions to fully achieve the benefits of SAP application.

Suggested Citation

  • Zheng, Huifang & Mei, Peipei & Wang, Wending & Yin, Yulong & Li, Haojie & Zheng, Mengyao & Ou, Xingqi & Cui, Zhenling, 2023. "Effects of super absorbent polymer on crop yield, water productivity and soil properties: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s0378377423001555
    DOI: 10.1016/j.agwat.2023.108290
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weiying Feng & Jiayue Gao & Rui Cen & Fang Yang & Zhongqi He & Jin Wu & Qingfeng Miao & Haiqing Liao, 2020. "Effects of Polyacrylamide-Based Super Absorbent Polymer and Corn Straw Biochar on the Arid and Semi-Arid Salinized Soil," Agriculture, MDPI, vol. 10(11), pages 1-17, November.
    2. Wang, Zhiyu & Shao, Guangcheng & Lu, Jia & Zhang, Kun & Gao, Yang & Ding, Jihui, 2020. "Effects of controlled drainage on crop yield, drainage water quantity and quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Adu, Michael O. & Yawson, David O. & Armah, Frederick A. & Asare, Paul A. & Frimpong, Kwame A., 2018. "Meta-analysis of crop yields of full, deficit, and partial root-zone drying irrigation," Agricultural Water Management, Elsevier, vol. 197(C), pages 79-90.
    4. Fang Yang & Rui Cen & Weiying Feng & Jing Liu & Zhongyi Qu & Qingfeng Miao, 2020. "Effects of Super-Absorbent Polymer on Soil Remediation and Crop Growth in Arid and Semi-Arid Areas," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    5. AbdAllah, Ahmed M. & Mashaheet, Alsayed M. & Burkey, Kent O., 2021. "Super absorbent polymers mitigate drought stress in corn (Zea mays L.) grown under rainfed conditions," Agricultural Water Management, Elsevier, vol. 254(C).
    6. Zheng, Huifang & Shao, Ruixin & Xue, Yanfang & Ying, Hao & Yin, Yulong & Cui, Zhenling & Yang, QingHua, 2020. "Water productivity of irrigated maize production systems in Northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 234(C).
    7. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. René Rietra & Marius Heinen & Oene Oenema, 2022. "A Review of Crop Husbandry and Soil Management Practices Using Meta-Analysis Studies: Towards Soil-Improving Cropping Systems," Land, MDPI, vol. 11(2), pages 1-31, February.
    2. Lu, Jia & Shao, Guangcheng & Gao, Yang & Zhang, Kun & Wei, Qun & Cheng, Jifan, 2021. "Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Zhao, Chenhao & Zhang, Lina & Zhang, Qiang & Wang, Jun & Wang, Shengsen & Zhang, Min & Liu, Zhiguang, 2022. "The effects of bio-based superabsorbent polymers on the water/nutrient retention characteristics and agricultural productivity of a saline soil from the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    5. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.
    6. Westhoek, Henk & Ingram, John & van Berkum, Siemen & Hajer, Maarten, 2015. "The European food system and natural resources: Impacts and Options," 148th Seminar, November 30-December 1, 2015, The Hague, The Netherlands 229279, European Association of Agricultural Economists.
    7. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    8. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    9. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    11. Thomas M. Koutsos & Georgios C. Menexes & Andreas P. Mamolos, 2021. "The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    12. Mr. Emmanuel Momolu Pope & Prof. Wilson Opile & Dr. Lucas Ngode & Dr. Chepkoech Emmy, 2023. "Assessment of Upland Rice Production Constraints and Farmers’ Preferred Varieties in Liberia," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(2), pages 1307-1322, February.
    13. Samuthirapandi Subburaj & Thiyagarajan Thulasinathan & Viswabharathy Sakthivel & Bharathi Ayyenar & Rohit Kambale & Veera Ranjani Rajagopalan & Sudha Manickam & Raghu Rajasekaran & Gopalakrishnan Chel, 2024. "Genetic Enhancement of Blast and Bacterial Leaf Blight Resistance in Rice Variety CO 51 through Marker-Assisted Selection," Agriculture, MDPI, vol. 14(5), pages 1-20, April.
    14. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    15. F. Jorge Bornemann & David P. Rowell & Barbara Evans & Dan J. Lapworth & Kamazima Lwiza & David M.J. Macdonald & John H. Marsham & Kindie Tesfaye & Matthew J. Ascott & Celia Way, 2019. "Future changes and uncertainty in decision-relevant measures of East African climate," Climatic Change, Springer, vol. 156(3), pages 365-384, October.
    16. Purola, Tuomo & Lehtonen, Heikki, 2020. "Evaluating profitability of soil-renovation investments under crop rotation constraints in Finland," Agricultural Systems, Elsevier, vol. 180(C).
    17. Yibo Luan & Wenquan Zhu & Xuefeng Cui & Günther Fischer & Terence P. Dawson & Peijun Shi & Zhenke Zhang, 2019. "Cropland yield divergence over Africa and its implication for mitigating food insecurity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 707-734, June.
    18. Zhaohong Wu & Wenyuan Hua & Liangguo Luo & Katsuya Tanaka, 2022. "Technical Efficiency of Maize Production and Its Influencing Factors in the World’s Largest Groundwater Drop Funnel Area, China," Agriculture, MDPI, vol. 12(5), pages 1-14, April.
    19. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    20. Nina Repar & Pierrick Jan & Thomas Nemecek & Dunja Dux & Martina Alig Ceesay & Reiner Doluschitz, 2016. "Local versus Global Environmental Performance of Dairying and Their Link to Economic Performance: A Case Study of Swiss Mountain Farms," Sustainability, MDPI, vol. 8(12), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s0378377423001555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.