IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v301y2024ics0378377424002932.html
   My bibliography  Save this article

Supplementary irrigation with ceramic emitter promotes Platycladus orientalis growth by enhancing soil bacterial α diversity under extremely high-temperature

Author

Listed:
  • Zhang, Jiasen
  • Zhang, Lin
  • Liu, Xufei

Abstract

Although afforestation plays a crucial role in reducing global warming, the survival of forests is increasingly threatened by the regular occurrence of extremely high-temperature (EHT) events. Currently, an innovative technology known as supplementary irrigation with ceramic emitter (SICE) was developed to maintain soil moisture and promote tree growth under EHT. Nevertheless, it is still unclear how SICE affects tree growth under EHT. In this study, a field experiment was conducted to monitor the growth status of Platycladus orientalis (P.orientalis) and analyze the physicochemical properties of the rhizosphere under EHT with SICE. The α diversity of soil bacterial communities in the rhizosphere was analyzed using high-throughput sequencing of 16 S rRNA and 18 S rRNA genes. The results indicated that SICE consistently maintained the soil water content (SWC) range from 0.26 cm3 cm−3 to 0.54 cm3 cm−3 during the entire experimental period under high-temperature conditions. Furthermore, SICE marginally increased the relative abundance of Actinobacteriota, Acidobacteriota, Chloroflexi and Methylomirabilota by 1.61 %, 0.99 %, 2.33 % and 4.31 % compared with CK, respectively. In comparison, SICE significantly decreased the relative abundance of Proteobacteria by 11.93 %, including α-Proteobacteria and γ-Proteobacteria, respectively. Additionally, SICE improved the absorption of SOC and nitrogen nutrients in P.orientalis, which were 41.20 %, 41.17 % and 28.35 % higher than CK, respectively and had a significant positive effect on the conversion from SOM to SOC and accelerated the absorption of soil nutrients for P.orientalis under EHT, resulting in increasing stem diameter, tree height, crown breadth and branch length of P.orientalis by 104.80 %, 81.67 %, 47.59 % and 94.68 %. Overall, this work provides direct evidence that SICE promoted tree growth by indirectly increasing α diversity of soil bacterial communities (e.g. Chloroflexi and Methylomirabilota) in the rhizosphere and accelerating the absorption of soil nutrients under EHT during the study period, which could offer a promising implication for advancing and implementing SICE technology under EHT.

Suggested Citation

  • Zhang, Jiasen & Zhang, Lin & Liu, Xufei, 2024. "Supplementary irrigation with ceramic emitter promotes Platycladus orientalis growth by enhancing soil bacterial α diversity under extremely high-temperature," Agricultural Water Management, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002932
    DOI: 10.1016/j.agwat.2024.108958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.