IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v177y2016icp107-117.html
   My bibliography  Save this article

Increasing the effective use of water in processing tomatoes through alternate furrow irrigation without a yield decrease

Author

Listed:
  • Barrios-Masias, Felipe H.
  • Jackson, Louise E.

Abstract

Surface irrigation represents >85% of irrigated agriculture worldwide. Partial root zone drying (PRD) is a technique for improving crop water productivity (WP), and in practice can be applied as alternate furrow irrigation (AFI). A series of research station and on-farm trials were conducted in two consecutive years and three soil types to evaluate processing tomato crop performance under AFI vs every furrow irrigation (EFI). Crop growth and leaf gas exchange, fruit biomass and quality, soil moisture and water applied were evaluated, and changes in irrigation WP (WPi) determined in response to PRD. The AFI was consistent in maintaining fresh yields across cultivars and environmental conditions (i.e., years and soil textures) with at least 25% lower irrigation volumes than commonly applied under EFI. WPi increased by >29% and maintained fruit quality under AFI. Canopy growth was slightly lower, and a tighter plant regulation of stomatal conductance (gs) with only a small decrease in photosynthetic rates (Pn) was observed under AFI. Our results demonstrate that for California processing tomatoes AFI is effective in reducing agricultural water needs. Because of the extent of furrow irrigation worldwide, AFI can contribute to maintain highly productive agricultural land under production with lower water supply.

Suggested Citation

  • Barrios-Masias, Felipe H. & Jackson, Louise E., 2016. "Increasing the effective use of water in processing tomatoes through alternate furrow irrigation without a yield decrease," Agricultural Water Management, Elsevier, vol. 177(C), pages 107-117.
  • Handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:107-117
    DOI: 10.1016/j.agwat.2016.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416302529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hutton, R.J. & Loveys, B.R., 2011. "A partial root zone drying irrigation strategy for citrus--Effects on water use efficiency and fruit characteristics," Agricultural Water Management, Elsevier, vol. 98(10), pages 1485-1496, August.
    2. Cantore, V. & Lechkar, O. & Karabulut, E. & Sellami, M.H. & Albrizio, R. & Boari, F. & Stellacci, A.M. & Todorovic, M., 2016. "Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of “cherry” tomato (Solanum lycopersicum L.)," Agricultural Water Management, Elsevier, vol. 167(C), pages 53-61.
    3. Zegbe, J. A. & Behboudian, M. H. & Clothier, B. E., 2004. "Partial rootzone drying is a feasible option for irrigating processing tomatoes," Agricultural Water Management, Elsevier, vol. 68(3), pages 195-206, August.
    4. Perry, Chris, 2011. "Accounting for water use: Terminology and implications for saving water and increasing production," Agricultural Water Management, Elsevier, vol. 98(12), pages 1840-1846, October.
    5. Kang, Shaozhong & Liang, Zongsuo & Pan, Yinhua & Shi, Peize & Zhang, Jianhua, 2000. "Alternate furrow irrigation for maize production in an arid area," Agricultural Water Management, Elsevier, vol. 45(3), pages 267-274, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    2. Jingwei Wang & Yuan Li & Wenquan Niu, 2020. "Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality," IJERPH, MDPI, vol. 17(3), pages 1-18, January.
    3. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    4. Machekposhti, Mabood Farhadi & Shahnazari, Ali & Yousefian, Mostafa & Ahmadi, Mirkhalegh Z. & Sarjaz, Mahmoud Raeini & Arabzadeh, Behrouz & Akbarzadeh, Ali & Leib, Brian G., 2023. "The effect of alternate partial root-zone drying and deficit irrigation on the yield, quality, and physiochemical parameters of milled rice," Agricultural Water Management, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Li, Fusheng & Wei, Caihui & Zhang, Fucang & Zhang, Jianhua & Nong, Mengling & Kang, Shaozhong, 2010. "Water-use efficiency and physiological responses of maize under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 97(8), pages 1156-1164, August.
    5. Kaman, Harun & Kirda, Cevat & Sesveren, Sertan, 2011. "Genotypic differences of maize in grain yield response to deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 801-807, March.
    6. Gencoglan, Cafer & Altunbey, Hasibe & Gencoglan, Serpil, 2006. "Response of green bean (P. vulgaris L.) to subsurface drip irrigation and partial rootzone-drying irrigation," Agricultural Water Management, Elsevier, vol. 84(3), pages 274-280, August.
    7. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    8. Sezen, S. Metin & Yucel, Seral & Tekin, Servet & Yıldız, Mehmet, 2019. "Determination of optimum irrigation and effect of deficit irrigation strategies on yield and disease rate of peanut irrigated with drip system in Eastern Mediterranean," Agricultural Water Management, Elsevier, vol. 221(C), pages 211-219.
    9. Marcella Michela Giuliani & Eugenio Nardella & Anna Gagliardi & Giuseppe Gatta, 2017. "Deficit Irrigation and Partial Root-Zone Drying Techniques in Processing Tomato Cultivated under Mediterranean Climate Conditions," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    10. Lu, Jia & Shao, Guangcheng & Gao, Yang & Zhang, Kun & Wei, Qun & Cheng, Jifan, 2021. "Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Hu, Xiaotao, 2006. "Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 41-52, July.
    12. Uygan, Demet & Cetin, Oner & Alveroglu, Volkan & Sofuoglu, Aytug, 2021. "Improvement of water saving and economic productivity based on quotation with sugar content of sugar beet using linear move sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 255(C).
    13. Du, Taisheng & Kang, Shaozhong & Sun, Jingsheng & Zhang, Xiying & Zhang, Jianhua, 2010. "An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China," Agricultural Water Management, Elsevier, vol. 97(1), pages 66-74, January.
    14. Tang, Li-Song & Li, Yan & Zhang, Jianhua, 2010. "Partial rootzone irrigation increases water use efficiency, maintains yield and enhances economic profit of cotton in arid area," Agricultural Water Management, Elsevier, vol. 97(10), pages 1527-1533, October.
    15. Campi, Pasquale & Mastrorilli, Marcello & Stellacci, Anna Maria & Modugno, Francesca & Palumbo, Angelo Domenico, 2019. "Increasing the effective use of water in green asparagus through deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 217(C), pages 119-130.
    16. Topak, Ramazan & Acar, Bilal & Uyanöz, Refik & Ceyhan, Ercan, 2016. "Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area," Agricultural Water Management, Elsevier, vol. 176(C), pages 180-190.
    17. Dutta, S. K & Laing, Alison M. & Kumar, S. & Gathala, Mahesh K. & Singh, Ajoy K. & Gaydon, D.S. & Poulton, P., 2020. "Improved water management practices improve cropping system profitability and smallholder farmers’ incomes," Agricultural Water Management, Elsevier, vol. 242(C).
    18. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    19. Wang, Yaosheng & Liu, Fulai & Andersen, Mathias N. & Jensen, Christian R., 2010. "Carbon retention in the soil-plant system under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(3), pages 419-424, December.
    20. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:107-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.