IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v215y2019icp1-7.html
   My bibliography  Save this article

Rainwater use by cotton under subsurface drip and center pivot irrigation

Author

Listed:
  • Goebel, Timothy S.
  • Lascano, Robert J.

Abstract

To increase the efficiency by which agronomic crops use water from both irrigation and rain during the growing season requires quantifying the proportion of rainfall used by the crop for a rain event. The rainfall pattern in the Texas High Plains (THP) is characterized by isolated thunderstorms of high rates and of short duration, where <1% of the storms produce rain events>50 mm and 80% of total rain events are < than 13 mm. The primary source of irrigation-water in the THP is pumped from the Ogallala Aquifer (OA), which has a different isotopic (δ18O) signature compared to rainfall-captured water. Given this difference, it is feasible to quantify changes in the δ18O signature of the plant water as the plant uptakes the rain- and irrigation-water stored in the soil. To this end, cotton (Gossypium hirsutum L.) was grown and irrigated with subsurface drip and center pivot and under dryland conditions. The irrigation-water was pumped from the OA and rainfall was collected in a rain gauge with mineral oil to prevent evaporation. Additionally, plant and soil samples were collected before and after each rain event. Thereafter, water was extracted from the collected soil and plant samples using cryogenic vacuum distillation and analyzed for δ18O (‰) using a Liquid-Water Isotope Analyzer. The difference in isotope concentrations in the extracts showed a change δ18O (‰) of the cotton petiole water toward that of the rainwater signature of 17% for sub-surface drip, 32% for dryland, and 63% for center pivot irrigation. These results imply that the application of irrigation-water with a sprinkler center pivot results in increased rainwater use in cotton compared to that of sub-surface drip.

Suggested Citation

  • Goebel, Timothy S. & Lascano, Robert J., 2019. "Rainwater use by cotton under subsurface drip and center pivot irrigation," Agricultural Water Management, Elsevier, vol. 215(C), pages 1-7.
  • Handle: RePEc:eee:agiwat:v:215:y:2019:i:c:p:1-7
    DOI: 10.1016/j.agwat.2018.12.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418314185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.12.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goebel, T.S. & Lascano, R.J. & Paxton, P.R. & Mahan, J.R., 2015. "Rainwater use by irrigated cotton measured with stable isotopes of water," Agricultural Water Management, Elsevier, vol. 158(C), pages 17-25.
    2. James R. Mahan & Robert J. Lascano, 2016. "Irrigation Analysis Based on Long-Term Weather Data," Agriculture, MDPI, vol. 6(3), pages 1-16, August.
    3. Wanjura, Donald F. & Upchurch, Dan R. & Mahan, James R. & Burke, John J., 2002. "Cotton yield and applied water relationships under drip irrigation," Agricultural Water Management, Elsevier, vol. 55(3), pages 217-237, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brighenti, Stefano & Tagliavini, Massimo & Comiti, Francesco & Aguzzoni, Agnese & Giuliani, Nicola & Ben Abdelkader, Ahmed & Penna, Daniele & Zanotelli, Damiano, 2024. "Drip irrigation frequency leads to plasticity in root water uptake by apple trees," Agricultural Water Management, Elsevier, vol. 298(C).
    2. Hunsaker, D.J. & Bronson, K.F., 2021. "FAO56 crop and water stress coefficients for cotton using subsurface drip irrigation in an arid US climate," Agricultural Water Management, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oweis, T.Y. & Farahani, H.J. & Hachum, A.Y., 2011. "Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria," Agricultural Water Management, Elsevier, vol. 98(8), pages 1239-1248, May.
    2. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    3. Hafiz Shahzad Ahmad & Muhammad Imran & Fiaz Ahmad & Shah Rukh & Rao Muhammad Ikram & Hafiz Muhammad Rafique & Zafar Iqbal & Abdulaziz Abdullah Alsahli & Mohammed Nasser Alyemeni & Shafaqat Ali & Tanve, 2021. "Improving Water Use Efficiency through Reduced Irrigation for Sustainable Cotton Production," Sustainability, MDPI, vol. 13(7), pages 1-12, April.
    4. Papastylianou, Panayiota T. & Argyrokastritis, Ioannis G., 2014. "Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 142(C), pages 127-134.
    5. DeTar, W.R., 2008. "Yield and growth characteristics for cotton under various irrigation regimes on sandy soil," Agricultural Water Management, Elsevier, vol. 95(1), pages 69-76, January.
    6. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    7. DeLaune, P.B & Mubvumba, P. & Ale, S. & Kimura, E., 2020. "Impact of no-till, cover crop, and irrigation on Cotton yield," Agricultural Water Management, Elsevier, vol. 232(C).
    8. Garibay, Victoria M. & Kothari, Kritika & Ale, Srinivasulu & Gitz, Dennis C. & Morgan, Gaylon D. & Munster, Clyde L., 2019. "Determining water-use-efficient irrigation strategies for cotton using the DSSAT CSM CROPGRO-cotton model evaluated with in-season data," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. Ünlü, Mustafa & Kanber, RIza & Koç, D. Levent & Tekin, Servet & Kapur, Burçak, 2011. "Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment," Agricultural Water Management, Elsevier, vol. 98(4), pages 597-605, February.
    10. Aujla, M.S. & Thind, H.S. & Buttar, G.S., 2005. "Cotton yield and water use efficiency at various levels of water and N through drip irrigation under two methods of planting," Agricultural Water Management, Elsevier, vol. 71(2), pages 167-179, February.
    11. Mauget, Steven & Ulloa, Mauricio & Mitchell-McCallister, Donna, 2022. "Simulated irrigation water productivity and related profit effects in U.S. Southern High Plains cotton production," Agricultural Water Management, Elsevier, vol. 266(C).
    12. Ibragimov, Nazirbay & Evett, Steven R. & Esanbekov, Yusupbek & Kamilov, Bakhtiyor S. & Mirzaev, Lutfullo & Lamers, John P.A., 2007. "Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 112-120, May.
    13. Blessing Masasi & Saleh Taghvaeian & Randy Boman & Sumon Datta, 2019. "Impacts of Irrigation Termination Date on Cotton Yield and Irrigation Requirement," Agriculture, MDPI, vol. 9(2), pages 1-15, February.
    14. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    15. Thind, H.S. & Aujla, M.S. & Buttar, G.S., 2008. "Response of cotton to various levels of nitrogen and water applied to normal and paired sown cotton under drip irrigation in relation to check-basin," Agricultural Water Management, Elsevier, vol. 95(1), pages 25-34, January.
    16. Domínguez, Alfonso & Schwartz, Robert C. & Pardo, José J. & Guerrero, Bridget & Bell, Jourdan M. & Colaizzi, Paul D. & Louis Baumhardt, R., 2022. "Center pivot irrigation capacity effects on maize yield and profitability in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 261(C).
    17. Brar, Harjeet Singh & Singh, Pritpal, 2022. "Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India," Agricultural Water Management, Elsevier, vol. 274(C).
    18. Zurweller, B.A. & Rowland, D.L. & Mulvaney, M.J. & Tillman, B.L. & Migliaccio, K. & Wright, D. & Erickson, J. & Payton, P. & Vellidis, G., 2019. "Optimizing cotton irrigation and nitrogen management using a soil water balance model and in-season nitrogen applications," Agricultural Water Management, Elsevier, vol. 216(C), pages 306-314.
    19. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2016. "Determining water use efficiency for wheat and cotton: A meta-regression analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236059, Agricultural and Applied Economics Association.
    20. Kang, Yaohu & Wang, Ruoshui & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Liu, Shiping, 2012. "Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China," Agricultural Water Management, Elsevier, vol. 109(C), pages 117-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:215:y:2019:i:c:p:1-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.