IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v266y2022ics0378377422001299.html
   My bibliography  Save this article

Simulated irrigation water productivity and related profit effects in U.S. Southern High Plains cotton production

Author

Listed:
  • Mauget, Steven
  • Ulloa, Mauricio
  • Mitchell-McCallister, Donna

Abstract

To explore management practices that increase irrigation water productivity (IWP) in U.S. Southern High Plains (SHP) cotton production, the CROPGRO-Cotton crop simulation model was used to evaluate the yield, IWP, and profit effects of irrigation amount and timing. Using 2005–2019 weather input data from 21 SHP weather stations, lint yields were simulated for each of the 315 station-years under unirrigated ‘dryland’ conditions and 18 increasing total irrigation (TIRR) levels. As TIRR was increased to 55.9 cm median lint yields asymptotically approached a maximum. However, irrigation above 35.6 cm increased the incidence of total irrigation plus growing season rainfall exceeding 100% of potential crop ET, leading to decreasing marginal yield effects and decreasing IWP. The highest median IWP (0.321 kg m−3) was found with both 33.0 and 35.6 cm of total irrigation, with 30.5 cm providing slightly lower IWP (0.320 kg m−3). In analyses of irrigated profitability under varying lint price and pumping cost conditions, 30.5 cm (12.0 in) of irrigation increases profits relative to dryland conditions under all but low lint price and high pumping cost conditions. But as TIRR is reduced the probability of these positive profit effects become similar to an evenly weighted coin flip at about 17.8 cm (7.0 in). Simulations that varied the timing of 30.5 cm of irrigation increased median IWP up to 0.434 kg m−3 by limiting irrigation to cotton’s reproductive and maturation periods, with no irrigation during the initial vegetative period. As a result, these simulations show that applying 30.5–35.6 cm (12.0–14.0 in) of irrigation during cotton’s reproductive and maturation phases, with little or no vegetative irrigation, maximizes IWP in SHP cotton production under current climate conditions.

Suggested Citation

  • Mauget, Steven & Ulloa, Mauricio & Mitchell-McCallister, Donna, 2022. "Simulated irrigation water productivity and related profit effects in U.S. Southern High Plains cotton production," Agricultural Water Management, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:agiwat:v:266:y:2022:i:c:s0378377422001299
    DOI: 10.1016/j.agwat.2022.107582
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422001299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mitchell-McCallister, Donna & Williams, Ryan B. & Bordovsky, James & Mustian, Joseph & Ritchie, Glen & Lewis, Katie, 2020. "Maximizing profits via irrigation timing for capacity-constrained cotton production," Agricultural Water Management, Elsevier, vol. 229(C).
    2. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Adhikari, Pradip & Ale, Srinivasulu & Bordovsky, James P. & Thorp, Kelly R. & Modala, Naga R. & Rajan, Nithya & Barnes, Edward M., 2016. "Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model," Agricultural Water Management, Elsevier, vol. 164(P2), pages 317-330.
    4. Elodie Blanc & Wolfram Schlenker, 2017. "The Use of Panel Models in Assessments of Climate Impacts on Agriculture," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 258-279.
    5. Wanjura, Donald F. & Upchurch, Dan R. & Mahan, James R. & Burke, John J., 2002. "Cotton yield and applied water relationships under drip irrigation," Agricultural Water Management, Elsevier, vol. 55(3), pages 217-237, June.
    6. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    2. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Garibay, Victoria M. & Kothari, Kritika & Ale, Srinivasulu & Gitz, Dennis C. & Morgan, Gaylon D. & Munster, Clyde L., 2019. "Determining water-use-efficient irrigation strategies for cotton using the DSSAT CSM CROPGRO-cotton model evaluated with in-season data," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Ismail Abd-Elaty & Alban Kuriqi & Abeer El Shahawy, 2022. "Environmental rethinking of wastewater drains to manage environmental pollution and alleviate water scarcity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2353-2380, February.
    5. Brar, Harjeet Singh & Singh, Pritpal, 2022. "Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India," Agricultural Water Management, Elsevier, vol. 274(C).
    6. Himanshu, Sushil Kumar & Fan, Yubing & Ale, Srinivasulu & Bordovsky, James, 2021. "Simulated efficient growth-stage-based deficit irrigation strategies for maximizing cotton yield, crop water productivity and net returns," Agricultural Water Management, Elsevier, vol. 250(C).
    7. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    8. Himanshu, Sushil Kumar & Ale, Srinivasulu & Bordovsky, James & Darapuneni, Murali, 2019. "Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    9. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    10. Ji, Xinde & Cobourn, Kelly M. & Weng, Weizhe, 2018. "The Effect of Climate Change on Irrigated Agriculture: Water-Temperature Interactions and Adaptation in the Western U.S," 2018 Annual Meeting, August 5-7, Washington, D.C. 274306, Agricultural and Applied Economics Association.
    11. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Feng, Z.Y. & Qin, T. & Du, X.Z. & Sheng, F. & Li, C.F., 2021. "Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China," Agricultural Water Management, Elsevier, vol. 250(C).
    13. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    14. Jonathan O. Hernandez, 2022. "Ecophysiological Effects of Groundwater Drawdown on Phreatophytes: Research Trends during the Last Three Decades," Land, MDPI, vol. 11(11), pages 1-18, November.
    15. Le Duc Anh & Ho Huu Loc & Kim N. Irvine & Tran Thanh & Luong Quang Tuong, 2021. "The waterscape of groundwater exploitation for domestic uses in District 12, Ho Chi Minh City, Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7652-7669, May.
    16. Wu, Lihong & Quan, Hao & Wu, Lina & Zhang, Xi & Feng, Hao & Ding, Dianyuan & Siddique, Kadambot H.M., 2023. "Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 289(C).
    17. Xing, Yingying & Zhang, Teng & Jiang, Wenting & Li, Peng & Shi, Peng & Xu, Guoce & Cheng, Shengdong & Cheng, Yuting & Fan, Zhang & Wang, Xiukang, 2022. "Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China," Agricultural Water Management, Elsevier, vol. 261(C).
    18. Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
    19. Zappa, Luca & Dari, Jacopo & Modanesi, Sara & Quast, Raphael & Brocca, Luca & De Lannoy, Gabrielle & Massari, Christian & Quintana-Seguí, Pere & Barella-Ortiz, Anais & Dorigo, Wouter, 2024. "Benefits and pitfalls of irrigation timing and water amounts derived from satellite soil moisture," Agricultural Water Management, Elsevier, vol. 295(C).
    20. Amouzou, Kokou Adambounou & Naab, Jesse B. & Lamers, John P.A. & Borgemeister, Christian & Becker, Mathias & Vlek, Paul L.G., 2018. "CROPGRO-Cotton model for determining climate change impacts on yield, water- and N- use efficiencies of cotton in the Dry Savanna of West Africa," Agricultural Systems, Elsevier, vol. 165(C), pages 85-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:266:y:2022:i:c:s0378377422001299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.