IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v210y2018icp1-10.html
   My bibliography  Save this article

Comprehensive environmental impacts of fertilizer application vary among different crops: Implications for the adjustment of agricultural structure aimed to reduce fertilizer use

Author

Listed:
  • Li, Wenchao
  • Guo, Shufang
  • Liu, Hongbin
  • Zhai, Limei
  • Wang, Hongyuan
  • Lei, Qiuliang

Abstract

Although empirical correlations between fertilizer application rate and nitrogen (N) loss have been demonstrated, the differences in overall environmental impacts of fertilizer application among different crops have not been thoroughly elucidated to date. We investigated the fate of 15N-labeled fertilizer in the plant-soil-air-water system across various crops (i.e., garlic, oilseed rape, and broad bean) by quantifying the N fluxes of various pathways combined with a pot experiment, a rainfall-simulating experiment, and 15N tracer techniques. Hence, we compared the differences between different crops in the overall environmental impacts of fertilizer application. We found that N amount by plant uptake varied among these different crops but with little variation in fertilizer use efficiency (FUE). The residual N amounts in soil were significantly different in these crops due to statistically non-differential soil residual percentages, consistent with the differences in the application rate of N fertilizer and FUE. Further, evidently different overall environmental impacts of fertilizer application occurred among these crops, including gaseous loss of fertilizer N and potentially hydrologic loss of soil residual N from fertilizer. The highest gaseous N loss, including ammonia (NH3) volatilization and nitrous oxide (N2O) emissions occurred in garlic system, and the lowest occurred in broad bean. Moreover, potentially hydrologic loss of soil residual N in the garlic system was higher than in the other two crop systems, and the least was observed in the broad bean system. Therefore, attempts to reduce fertilizer application could benefit from considering the difference in overall environmental impacts of fertilizer application between different crop systems. The shift from crops with high environmental impacts to that with low impacts can largely reduce the regional N pollution.

Suggested Citation

  • Li, Wenchao & Guo, Shufang & Liu, Hongbin & Zhai, Limei & Wang, Hongyuan & Lei, Qiuliang, 2018. "Comprehensive environmental impacts of fertilizer application vary among different crops: Implications for the adjustment of agricultural structure aimed to reduce fertilizer use," Agricultural Water Management, Elsevier, vol. 210(C), pages 1-10.
  • Handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:1-10
    DOI: 10.1016/j.agwat.2018.07.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741830934X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.07.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark A. Sutton & Oene Oenema & Jan Willem Erisman & Adrian Leip & Hans van Grinsven & Wilfried Winiwarter, 2011. "Too much of a good thing," Nature, Nature, vol. 472(7342), pages 159-161, April.
    2. Lijun Zuo & Zengxiang Zhang & Kimberly M. Carlson & Graham K. MacDonald & Kate A. Brauman & Yingchun Liu & Wen Zhang & Huayong Zhang & Wenbin Wu & Xiaoli Zhao & Xiao Wang & Bin Liu & Ling Yi & Qingke , 2018. "Progress towards sustainable intensification in China challenged by land-use change," Nature Sustainability, Nature, vol. 1(6), pages 304-313, June.
    3. Zhang, Haibo & Richardson, Patricia A. & Belayneh, Bruk E. & Ristvey, Andrew & Lea-Cox, John & Copes, Warren E. & Moorman, Gary W. & Hong, Chuanxue, 2015. "Characterization of water quality in stratified nursery recycling irrigation reservoirs," Agricultural Water Management, Elsevier, vol. 160(C), pages 76-83.
    4. Li, Zhoujing & Hu, Kelin & Li, Baoguo & He, Mingrong & Zhang, Jiwang, 2015. "Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach," Agricultural Water Management, Elsevier, vol. 159(C), pages 19-34.
    5. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    6. Islam, S.M. Mofijul & Gaihre, Yam Kanta & Biswas, Jatish Chandra & Jahan, Md. Sarwar & Singh, Upendra & Adhikary, Sanjoy Kumar & Satter, M. Abdus & Saleque, M.A., 2018. "Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: Fate of nitrogen and grain yield," Agricultural Water Management, Elsevier, vol. 196(C), pages 144-153.
    7. Williams, M.R. & King, K.W. & Fausey, N.R., 2015. "Drainage water management effects on tile discharge and water quality," Agricultural Water Management, Elsevier, vol. 148(C), pages 43-51.
    8. Pan, Junfeng & Liu, Yanzhuo & Zhong, Xuhua & Lampayan, Rubenito M. & Singleton, Grant R. & Huang, Nongrong & Liang, Kaiming & Peng, Bilin & Tian, Ka, 2017. "Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China," Agricultural Water Management, Elsevier, vol. 184(C), pages 191-200.
    9. Muschietti-Piana, Maria del Pilar & Cipriotti, Pablo Ariel & Urricariet, Susana & Peralta, Nahuel Raul & Niborski, Mauricio, 2018. "Using site-specific nitrogen management in rainfed corn to reduce the risk of nitrate leaching," Agricultural Water Management, Elsevier, vol. 199(C), pages 61-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenhao Song & Chunhui Ye, 2022. "Impact of the Cultivated-Land-Management Scale on Fertilizer Reduction—Empirical Evidence from the Countryside of China," Land, MDPI, vol. 11(8), pages 1-15, July.
    2. Michail Tsangas & Ifigeneia Gavriel & Maria Doula & Flouris Xeni & Antonis A. Zorpas, 2020. "Life Cycle Analysis in the Framework of Agricultural Strategic Development Planning in the Balkan Region," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    3. Yin, Gaofei & Wang, Xiaofei & Du, Huiying & Shen, Shizhou & Liu, Canran & Zhang, Keqiang & Li, Wenchao, 2019. "N2O and CO2 emissions, nitrogen use efficiency under biogas slurry irrigation: A field study of two consecutive wheat-maize rotation cycles in the North China Plain," Agricultural Water Management, Elsevier, vol. 212(C), pages 232-240.
    4. Kai Xu & Jiaogen Zhou & Qiuliang Lei & Wenbiao Wu & Guangxiong Mao, 2023. "Effect of Agricultural Structure Adjustment on Spatio-Temporal Patterns of Net Anthropogenic Nitrogen Inputs in the Pearl River Basin from 1990 to 2019," Land, MDPI, vol. 12(2), pages 1-18, January.
    5. Maria M. Whitton & Xipeng Ren & Sung J. Yu & Andrew D. Irving & Tieneke Trotter & Yadav S. Bajagai & Dragana Stanley, 2022. "Sea Minerals Reduce Dysbiosis, Improve Pasture Productivity and Plant Morphometrics in Pasture Dieback Affected Soils," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    6. Muhammad Younas & Huasong Zou & Tasmia Laraib & Waseem Abbas & Muhammad Waqar Akhtar & Muhammad Naveed Aslam & Luqman Amrao & Shoukat Hayat & Tariq Abdul Hamid & Akhtar Hameed & Ghalib Ayaz Kachelo & , 2021. "The influence of vermicomposting on photosynthetic activity and productivity of maize (Zea mays L.) crop under semi-arid climate," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-9, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jianliang & Huang, Xinya & Jiang, Haibo & Chen, Huai, 2021. "Sustaining yield and mitigating methane emissions from rice production with plastic film mulching technique," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Xiao, Guangmin & Zhao, Zichao & Liang, Long & Meng, Fanqiao & Wu, Wenliang & Guo, Yanbin, 2019. "Improving nitrogen and water use efficiency in a wheat-maize rotation system in the North China Plain using optimized farming practices," Agricultural Water Management, Elsevier, vol. 212(C), pages 172-180.
    3. Xiaochuang Cao & Birong Qin & Qingxu Ma & Lianfeng Zhu & Chunquan Zhu & Yali Kong & Wenhao Tian & Qianyu Jin & Junhua Zhang & Yijun Yu, 2023. "Predicting the Nitrogen Quota Application Rate in a Double Rice Cropping System Based on Rice–Soil Nitrogen Balance and 15 N Labelling Analysis," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    4. Langong Hou & Che Ma & Tao Liu, 2024. "Revealing Greenhouse Gas Emission and Nitrogen Fertilizer Destination: A Case Study in Chengdu Plain Cultivation Industry," Sustainability, MDPI, vol. 16(14), pages 1-19, July.
    5. Cheng, Qingyue & Li, Liangyu & Liao, Qin & Fu, Hao & Nie, Jiangxia & Luo, Yongheng & Wang, Zhonglin & Yin, Huilai & Shu, Chuanhai & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Li, Na & Yang, Zhiyuan, 2023. "Is scale production more advantageous than smallholders for Chinese rice production?," Energy, Elsevier, vol. 283(C).
    6. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2021. "Transport and transformation of water and nitrogen under different irrigation modes and urea application regimes in paddy fields," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    8. Tang, Jiankai & Yang, Qiliang & Liang, Jiaping & Wang, Haidong & Yue, Xiulu, 2024. "Water management, planting slope indicators, and economic benefit analysis for Panax notoginseng production decision under shaded and rain-shelter cultivation: A three-year sloping fields experiment," Agricultural Water Management, Elsevier, vol. 291(C).
    9. Taotao Yang & Jixiang Zou & Longmei Wu & Xiaozhe Bao & Yu Jiang & Nan Zhang & Bin Zhang, 2024. "Experimental Warming Reduces the Grain Yield and Nitrogen Utilization Efficiency of Double-Cropping indica Rice in South China," Agriculture, MDPI, vol. 14(6), pages 1-12, June.
    10. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    11. Zhao, Zhanqing & Qin, Wei & Bai, Zhaohai & Ma, Lin, 2019. "Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 262-272.
    12. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
    13. Han, Bo & Jin, Xiaobin & Sun, Rui & Li, Hanbing & Liang, Xinyuan & Zhou, Yinkang, 2023. "Understanding land-use sustainability with a systematical framework: An evaluation case of China," Land Use Policy, Elsevier, vol. 132(C).
    14. Bruna Moreira & Alexandre Gonçalves & Luís Pinto & Miguel A. Prieto & Márcio Carocho & Cristina Caleja & Lillian Barros, 2024. "Intercropping Systems: An Opportunity for Environment Conservation within Nut Production," Agriculture, MDPI, vol. 14(7), pages 1-23, July.
    15. Meyer-Aurich, Andreas & Karatay, Yusuf Nadi, 2019. "Effects of uncertainty and farmers' risk aversion on optimal N fertilizer supply in wheat production in Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 130-139.
    16. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
    17. Chen, Feifei & Qiu, Huanguang & Zhao, Yilin & Wei, Xun & Wan, Xiangyuan, 2024. "Impact of new maize variety adoption on yield and fertilizer input in China: Implications for sustainable food and agriculture," Agricultural Systems, Elsevier, vol. 218(C).
    18. Shi, Xinrui & Batchelor, William D. & Liang, Hao & Li, Sien & Li, Baoguo & Hu, Kelin, 2020. "Determining optimal water and nitrogen management under different initial soil mineral nitrogen levels in northwest China based on a model approach," Agricultural Water Management, Elsevier, vol. 234(C).
    19. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    20. Simon Anastasiadis & Marie-Laure Nauleau & Suzi Kerr & Tim Cox & Kit Rutherford, 2011. "Does Complex Hydrology Require Complex Water Quality Policy? NManager Simulations for Lake Rotorua," Working Papers 11_14, Motu Economic and Public Policy Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.