IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v248y2021ics0378377421000287.html
   My bibliography  Save this article

Automatically selecting hot and cold pixels for satellite actual evapotranspiration estimation under different topographic and climatic conditions

Author

Listed:
  • Saboori, Mojtaba
  • Mokhtari, Ali
  • Afrasiabian, Yasamin
  • Daccache, Andre
  • Alaghmand, Sina
  • Mousivand, Yousef

Abstract

The persistent monitoring of evapotranspiration (ET) over the regions suffering from water scarcity is critical for sustainable agricultural water management. Remote sensing provides time- and cost-effective capability to investigate daily ET rates at large scales. Satellite-based actual evapotranspiration (ETa) algorithms typically rely on specifying the upper and lower boundaries of ETa rate over agricultural and pasture fields, commonly known as hot (dry) and cold (wet) pixels selection. These boundaries are to be recognized by an expert through a subjective and labor-intensive task. In this study, a method has been introduced to automatically select appropriate anchor pixels (i.e., hot and cold pixels) independent from land use/cover maps with the simplest possible way, quickly applied even by an inexperienced operator. Subsequently, ETa was calculated using Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC), Surface Energy Balance Algorithm for Land (SEBAL), and Surface Energy Balance System (SEBS) algorithms and evaluated against measured data. In this method, the mountains and foothills were removed using the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) and the subsequent product was a slope mask. Then, filters were applied based on the Normalized Difference Vegetation Index (NDVI), Albedo, and Land Surface Temperature (LST) images to identify potential candidate pixels for hot and cold pixels. In the end, the best-conditioned pixel being closest to the meteorological station was selected. The method was assessed in five different regions with different topographic and climatic conditions. The selected pixels were first visually validated in Landsat images, and then the fluctuations and values were discussed in time series of anchor pixels and LST histograms. The visual interpretation was indicative of selecting the anchor pixels in fallow (hot pixel) and densely vegetated (cold pixel) surfaces. Also, the hot and cold pixels were suitably situated in the upper and lower quartiles of the LST histogram, respectively. The range of cold pixels variations throughout the study periods was lower compared with the hot pixels (44.2, 55.3, 35.5, 66.5, and 25.2 K for hot pixels against 34.2, 45.7, 25.6, 52.2, and 17 K for cold pixels) as expected, which emanated from the lower fluctuations of temperature over vegetation against the soil. The results were indicative of the better performance of METRIC compared with SEBAL and SEBS with greater values of R2 in all the regions. Therefore, using the introduced method, the expert subjective interference was eliminated and processing time reduced significantly from about 1 h per image to a few minutes.

Suggested Citation

  • Saboori, Mojtaba & Mokhtari, Ali & Afrasiabian, Yasamin & Daccache, Andre & Alaghmand, Sina & Mousivand, Yousef, 2021. "Automatically selecting hot and cold pixels for satellite actual evapotranspiration estimation under different topographic and climatic conditions," Agricultural Water Management, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:agiwat:v:248:y:2021:i:c:s0378377421000287
    DOI: 10.1016/j.agwat.2021.106763
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421000287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allen, Richard G., 2011. "Skin layer evaporation to account for small precipitation events—An enhancement to the FAO-56 evaporation model," Agricultural Water Management, Elsevier, vol. 99(1), pages 8-18.
    2. Mokhtari, Ali & Noory, Hamideh & Vazifedoust, Majid & Bahrami, Mahdi, 2018. "Estimating net irrigation requirement of winter wheat using model- and satellite-based single and basal crop coefficients," Agricultural Water Management, Elsevier, vol. 208(C), pages 95-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    2. Yao, Yuxia & Liao, Xingliang & Xiao, Junlan & He, Qiulan & Shi, Weiyu, 2023. "The sensitivity of maize evapotranspiration to vapor pressure deficit and soil moisture with lagged effects under extreme drought in Southwest China," Agricultural Water Management, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Wei & Yang, Jingsong & Yao, Rongjiang & Xie, Wenping & Wang, Xiangping & Liu, Yuqian, 2022. "Soil water-salt control and yield improvement under the effect of compound control in saline soil of the Yellow River Delta, China," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Mokhtari, Ali & Noory, Hamideh & Vazifedoust, Majid & Palouj, Mojtaba & Bakhtiari, Atousa & Barikani, Elham & Zabihi Afrooz, Ramezan Ali & Fereydooni, Fatemeh & Sadeghi Naeni, Ali & Pourshakouri, Farr, 2019. "Evaluation of single crop coefficient curves derived from Landsat satellite images for major crops in Iran," Agricultural Water Management, Elsevier, vol. 218(C), pages 234-249.
    4. Longo-Minnolo, G. & Vanella, D. & Consoli, S. & Intrigliolo, D.S. & Ramírez-Cuesta, J.M., 2020. "Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration rates of a citrus orchard," Agricultural Water Management, Elsevier, vol. 231(C).
    5. Yimam, Yohannes Tadesse & Ochsner, Tyson E. & Kakani, Vijaya Gopal, 2015. "Evapotranspiration partitioning and water use efficiency of switchgrass and biomass sorghum managed for biofuel," Agricultural Water Management, Elsevier, vol. 155(C), pages 40-47.
    6. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    7. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
    8. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2019. "Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method," Agricultural Water Management, Elsevier, vol. 213(C), pages 868-881.
    9. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:248:y:2021:i:c:s0378377421000287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.