IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp1586-1592.html
   My bibliography  Save this article

Life after the financial crisis. Energy intensity and energy use decomposition on sectorial level in Latvia

Author

Listed:
  • Timma, Lelde
  • Zoss, Toms
  • Blumberga, Dagnija

Abstract

This study explores the causes of changes in energy intensity and energy use in Latvia by applying logarithmic mean Divisia index decomposition and mean-rate-of-exchange index analysis for energy sectors. Analysis on the latest data (2008–2012) reveals if any technological or structural changes have occurred during and after economic downturn in Latvia. The study explored effect of economic activity on final energy use. The results show that the reduction in energy intensity before the year 2008 can be largely attributed to decline in energy intensities within sectors, but the increase in energy intensity after the year 2008 is regarded to expansion of energy demanding sectors.

Suggested Citation

  • Timma, Lelde & Zoss, Toms & Blumberga, Dagnija, 2016. "Life after the financial crisis. Energy intensity and energy use decomposition on sectorial level in Latvia," Applied Energy, Elsevier, vol. 162(C), pages 1586-1592.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1586-1592
    DOI: 10.1016/j.apenergy.2015.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915004766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Ki-Hong & Oh, Wankeun, 2014. "Extended Divisia index decomposition of changes in energy intensity: A case of Korean manufacturing industry," Energy Policy, Elsevier, vol. 65(C), pages 275-283.
    2. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    3. Choi, Ki-Hong & Ang, B.W., 2012. "Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis," Energy Economics, Elsevier, vol. 34(1), pages 171-176.
    4. Baležentis, Alvydas & Baležentis, Tomas & Streimikiene, Dalia, 2011. "The energy intensity in Lithuania during 1995–2009: A LMDI approach," Energy Policy, Elsevier, vol. 39(11), pages 7322-7334.
    5. Chung, Hyun-Sik & Rhee, Hae-Chun, 2001. "A residual-free decomposition of the sources of carbon dioxide emissions: a case of the Korean industries," Energy, Elsevier, vol. 26(1), pages 15-30.
    6. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
    7. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    8. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    9. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
    10. Wang, Wenwen & Liu, Xiao & Zhang, Ming & Song, Xuefeng, 2014. "Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China's energy consumption," Energy, Elsevier, vol. 67(C), pages 617-622.
    11. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    12. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    13. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    14. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    15. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2013. "Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010," Energy, Elsevier, vol. 59(C), pages 743-753.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shulin & Su, Xiaoling & Singh, Vijay P & Ayantobo, Olusola Olaitan & Xie, Juan, 2018. "Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 208(C), pages 422-430.
    2. Oludolapo A Olanrewaju, 2018. "Energy consumption in South African industry: A decomposition analysis using the LMDI approach," Energy & Environment, , vol. 29(2), pages 232-244, March.
    3. Xie, Xuan & Lin, Boqiang, 2019. "Understanding the energy intensity change in China's food industry: A comprehensive decomposition method," Energy Policy, Elsevier, vol. 129(C), pages 53-68.
    4. Bianco, V. & Proskuryakova, L. & Starodubtseva, A., 2021. "Energy inequality in the Eurasian Economic Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    6. Zafar, Muhammad Wasif & Zaidi, Syed Anees Haider & Sinha, Avik & Gedikli, Ayfer & Hou, Fujun, 2019. "The role of stock market and banking sector development, and renewable energy consumption in carbon emissions: Insights from G-7 and N-11 countries," Resources Policy, Elsevier, vol. 62(C), pages 427-436.
    7. Vaclovas Miškinis & Arvydas Galinis & Inga Konstantinavičiūtė & Vidas Lekavičius & Eimantas Neniškis, 2021. "The Role of Renewable Energy Sources in Dynamics of Energy-Related GHG Emissions in the Baltic States," Sustainability, MDPI, vol. 13(18), pages 1-35, September.
    8. Davine N. G. Janssen & Eunice Pereira Ramos & Vincent Linderhof & Nico Polman & Chrysi Laspidou & Dennis Fokkinga & Duarte de Mesquita e Sousa, 2020. "The Climate, Land, Energy, Water and Food Nexus Challenge in a Land Scarce Country: Innovations in the Netherlands," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    9. Pui, Kiew Ling & Othman, Jamal, 2019. "The influence of economic, technical, and social aspects on energy-associated CO2 emissions in Malaysia: An extended Kaya identity approach," Energy, Elsevier, vol. 181(C), pages 468-493.
    10. Isik, Mine & Ari, Izzet & Sarica, Kemal, 2021. "Challenges in the CO2 emissions of the Turkish power sector: Evidence from a two-level decomposition approach," Utilities Policy, Elsevier, vol. 70(C).
    11. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    12. Yingjie Hu & Yunhong Hao & Ali Raza, 2023. "Association between the stock market and green economic growth: green recovery from BRICS economics," Economic Change and Restructuring, Springer, vol. 56(6), pages 3861-3884, December.
    13. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    14. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    15. Wang, H. & Ang, B.W., 2018. "Assessing the role of international trade in global CO2 emissions: An index decomposition analysis approach," Applied Energy, Elsevier, vol. 218(C), pages 146-158.
    16. Zhang, Dayong & Cao, Hong & Wei, Yi-Ming, 2016. "Identifying the determinants of energy intensity in China: A Bayesian averaging approach," Applied Energy, Elsevier, vol. 168(C), pages 672-682.
    17. Jain, Princy & Goswami, Binoy, 2021. "Energy efficiency in South Asia: Trends and determinants," Energy, Elsevier, vol. 221(C).
    18. Adom, Philip Kofi & Adams, Samuel, 2018. "Energy savings in Nigeria. Is there a way of escape from energy inefficiency?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2421-2430.
    19. Liao, Hua & Du, Yun-Fei & Huang, Zhimin & Wei, Yi-Ming, 2016. "Measuring energy economic efficiency: A mathematical programming approach," Applied Energy, Elsevier, vol. 179(C), pages 479-487.
    20. Chiang-Ping Chen & Ming-Chung Chang & Wei-Che Tsai, 2021. "Dynamic Energy Efficiency, Energy Decoupling Rate, and Decarbonization: Evidence from ASEAN+6," SAGE Open, , vol. 11(3), pages 21582440211, September.
    21. Perry Sadorsky, 2020. "Energy Related CO 2 Emissions before and after the Financial Crisis," Sustainability, MDPI, vol. 12(9), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    2. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    3. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    4. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    5. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    6. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Meng, Bo, 2021. "Attribution of changes in an intensity index," Energy, Elsevier, vol. 216(C).
    7. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    8. Moutinho, Victor & Madaleno, Mara & Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "Factors affecting CO2 emissions in top countries on renewable energies: A LMDI decomposition application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 605-622.
    9. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    10. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    11. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    12. Du, Kerui & Lin, Boqiang, 2015. "Understanding the rapid growth of China's energy consumption: A comprehensive decomposition framework," Energy, Elsevier, vol. 90(P1), pages 570-577.
    13. Wang, Juan & Hu, Mingming & Rodrigues, João F.D., 2018. "The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis," Applied Energy, Elsevier, vol. 228(C), pages 2195-2206.
    14. Junghwan Lee & Jinsoo Kim, 2021. "A Decomposition Analysis of the Korean Manufacturing Sector: Monetary vs. Physical Outputs," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    15. Fei Wang & Changjian Wang & Jing Chen & Zeng Li & Ling Li, 2020. "Examining the determinants of energy-related carbon emissions in Central Asia: country-level LMDI and EKC analysis during different phases," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7743-7769, December.
    16. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    17. Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
    18. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    19. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    20. Xie, Xuan & Lin, Boqiang, 2019. "Understanding the energy intensity change in China's food industry: A comprehensive decomposition method," Energy Policy, Elsevier, vol. 129(C), pages 53-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1586-1592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.