IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v206y2018icp78-85.html
   My bibliography  Save this article

Estimating irrigation duration for high performance furrow irrigation on cracking clay soils

Author

Listed:
  • Smith, R.J.
  • Uddin, M.J.
  • Gillies, M.H.

Abstract

Selection of an appropriate combination of flow rate and time to cut-off is critical to the achievement of high performance furrow irrigation. For the cotton growing regions of Australia the ready availability of land and the relative scarcity of water impose a constraint not present in all surface irrigation areas. In this situation the objective is to improve water use efficiency by maximising application efficiency. In this paper, simulations employing this strategy and historical furrow irrigation data have shown that application efficiency increases with flow rate up to a point where no further increase in efficiency is possible. They have also shown that for any field there is a simple linear relationship between time to cut-off and the time for the advance to reach mid-way down the field. This relationship provides a simple and robust guide for the selection of time to cut-off that requires no knowledge of the flow rate or soil moisture deficit. Application of the relationship delivers a significant increase in efficiency over that resulting from usual grower practice.

Suggested Citation

  • Smith, R.J. & Uddin, M.J. & Gillies, M.H., 2018. "Estimating irrigation duration for high performance furrow irrigation on cracking clay soils," Agricultural Water Management, Elsevier, vol. 206(C), pages 78-85.
  • Handle: RePEc:eee:agiwat:v:206:y:2018:i:c:p:78-85
    DOI: 10.1016/j.agwat.2018.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418301604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bautista, E. & Clemmens, A.J. & Strelkoff, T.S. & Schlegel, J., 2009. "Modern analysis of surface irrigation systems with WinSRFR," Agricultural Water Management, Elsevier, vol. 96(7), pages 1146-1154, July.
    2. Koech, R.K. & Smith, R.J. & Gillies, M.H., 2014. "Evaluating the performance of a real-time optimisation system for furrow irrigation," Agricultural Water Management, Elsevier, vol. 142(C), pages 77-87.
    3. Smith, R.J. & Raine, S.R. & Minkevich, J., 2005. "Irrigation application efficiency and deep drainage potential under surface irrigated cotton," Agricultural Water Management, Elsevier, vol. 71(2), pages 117-130, February.
    4. Feyen, Jan & Zerihun, Dawit, 1999. "Assessment of the performance of border and furrow irrigation systems and the relationship between performance indicators and system variables," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 353-362, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mazarei, Reza & Soltani Mohammadi, Amir & Ebrahimian, Hamed & Naseri, Abd Ali, 2021. "Temporal variability of infiltration and roughness coefficients and furrow irrigation performance under different inflow rates," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Smith, RJ & Uddin, MJ, 2020. "Selection of flow rate and irrigation duration for high performance bay irrigation," Agricultural Water Management, Elsevier, vol. 228(C).
    3. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    4. Mehri, Akbar & Mohammadi, Amir Soltani & Ebrahimian, Hamed & Boroomandnasab, Saeid, 2023. "Evaluation and optimization of surge and alternate furrow irrigation performance in maize fields using the WinSRFR software," Agricultural Water Management, Elsevier, vol. 276(C).
    5. Ioannidou, Sotiroula C. & Litskas, Vassilis D. & Stavrinides, Menelaos C. & Vogiatzakis, Ioannis N., 2022. "Linking management practices and soil properties to Ecosystem Services in Mediterranean mixed orchards," Ecosystem Services, Elsevier, vol. 53(C).
    6. Pazouki, Ehsan, 2021. "A practical surface irrigation system design based on volume balance model and multi-objective evolutionary optimization algorithms," Agricultural Water Management, Elsevier, vol. 248(C).
    7. Pazouki, Ehsan, 2021. "A practical surface irrigation design based on fuzzy logic and meta-heuristic algorithms," Agricultural Water Management, Elsevier, vol. 256(C).
    8. Pazouki, Ehsan, 2023. "A smart surface irrigation design based on the topographical and geometrical shape characteristics of the land," Agricultural Water Management, Elsevier, vol. 275(C).
    9. Costabile, Pierfranco & Costanzo, Carmelina & Gangi, Fabiola & De Gaetani, Carlo Iapige & Rossi, Lorenzo & Gandolfi, Claudio & Masseroni, Daniele, 2023. "High-resolution 2D modelling for simulating and improving the management of border irrigation," Agricultural Water Management, Elsevier, vol. 275(C).
    10. Nie, Wei-Bo & Li, Yi-Bo & Zhang, Fan & Ma, Xiao-Yi, 2019. "Optimal discharge for closed-end border irrigation under soil infiltration variability," Agricultural Water Management, Elsevier, vol. 221(C), pages 58-65.
    11. Mohamed Khaled Salahou & Xiyun Jiao & Haishen Lü & Weihua Guo, 2020. "An improved approach to estimating the infiltration characteristics in surface irrigation systems," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morris, Michael R. & Hussain, Amjed & Gillies, Malcolm H. & O’Halloran, Nicholas J., 2015. "Inflow rate and border irrigation performance," Agricultural Water Management, Elsevier, vol. 155(C), pages 76-86.
    2. Costabile, Pierfranco & Costanzo, Carmelina & Gangi, Fabiola & De Gaetani, Carlo Iapige & Rossi, Lorenzo & Gandolfi, Claudio & Masseroni, Daniele, 2023. "High-resolution 2D modelling for simulating and improving the management of border irrigation," Agricultural Water Management, Elsevier, vol. 275(C).
    3. Smith, RJ & Uddin, MJ, 2020. "Selection of flow rate and irrigation duration for high performance bay irrigation," Agricultural Water Management, Elsevier, vol. 228(C).
    4. Mehri, Akbar & Mohammadi, Amir Soltani & Ebrahimian, Hamed & Boroomandnasab, Saeid, 2023. "Evaluation and optimization of surge and alternate furrow irrigation performance in maize fields using the WinSRFR software," Agricultural Water Management, Elsevier, vol. 276(C).
    5. Devkota, Krishna Prasad & Yadav, Sudhir & Humphreys, E. & Kumar, Akhilesh & Kumar, Pankaj & Kumar, Virender & Malik, R.K. & Srivastava, Amit K., 2021. "Land gradient and configuration effects on yield, irrigation amount and irrigation water productivity in rice-wheat and maize-wheat cropping systems in Eastern India," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Xu, Jiatun & Cai, Huanjie & Saddique, Qaisar & Wang, Xiaoyun & Li, Liang & Ma, Chenguang & Lu, Yajun, 2019. "Evaluation and optimization of border irrigation in different irrigation seasons based on temporal variation of infiltration and roughness," Agricultural Water Management, Elsevier, vol. 214(C), pages 64-77.
    7. Mazarei, Reza & Soltani Mohammadi, Amir & Ebrahimian, Hamed & Naseri, Abd Ali, 2021. "Temporal variability of infiltration and roughness coefficients and furrow irrigation performance under different inflow rates," Agricultural Water Management, Elsevier, vol. 245(C).
    8. Mazarei, Reza & Mohammadi, Amir Soltani & Naseri, Abd Ali & Ebrahimian, Hamed & Izadpanah, Zahra, 2020. "Optimization of furrow irrigation performance of sugarcane fields based on inflow and geometric parameters using WinSRFR in Southwest of Iran," Agricultural Water Management, Elsevier, vol. 228(C).
    9. Kaihua Liu & Xiyun Jiao & Weihua Guo & Yunhao An & Mohamed Khaled Salahou, 2020. "Improving border irrigation performance with predesigned varied-discharge," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-12, May.
    10. Pazouki, Ehsan, 2021. "A practical surface irrigation design based on fuzzy logic and meta-heuristic algorithms," Agricultural Water Management, Elsevier, vol. 256(C).
    11. Darouich, Hanaa & Gonçalves, José M. & Muga, André & Pereira, Luis S., 2012. "Water saving vs. farm economics in cotton surface irrigation: An application of multicriteria analysis," Agricultural Water Management, Elsevier, vol. 115(C), pages 223-231.
    12. Ebrahimian, Hamed & Ghaffari, Parisa & Ghameshlou, Arezoo N. & Tabatabaei, Sayyed-Hassan & Alizadeh Dizaj, Amin, 2020. "Extensive comparison of various infiltration estimation methods for furrow irrigation under different field conditions," Agricultural Water Management, Elsevier, vol. 230(C).
    13. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    14. Salahou, Mohamed Khaled & Jiao, Xiyun & Lü, Haishen, 2018. "Border irrigation performance with distance-based cut-off," Agricultural Water Management, Elsevier, vol. 201(C), pages 27-37.
    15. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    16. Mabhaudhi, Tafadzwanashe & Dirwai, Tinashe Lindel & Taguta, Cuthbert & Sikka, Alok & Lautze, Jonathan, 2023. "Mapping Decision Support Tools (DSTs) on agricultural water productivity: A global systematic scoping review," Agricultural Water Management, Elsevier, vol. 290(C).
    17. Masseroni, Daniele & Moller, Peter & Tyrell, Reece & Romani, Marco & Lasagna, Alberto & Sali, Guido & Facchi, Arianna & Gandolfi, Claudio, 2018. "Evaluating performances of the first automatic system for paddy irrigation in Europe," Agricultural Water Management, Elsevier, vol. 201(C), pages 58-69.
    18. Pazouki, Ehsan, 2021. "A practical surface irrigation system design based on volume balance model and multi-objective evolutionary optimization algorithms," Agricultural Water Management, Elsevier, vol. 248(C).
    19. Nie, Wei-Bo & Li, Yi-Bo & Zhang, Fan & Ma, Xiao-Yi, 2019. "Optimal discharge for closed-end border irrigation under soil infiltration variability," Agricultural Water Management, Elsevier, vol. 221(C), pages 58-65.
    20. Bakker, D.M. & Plunkett, G. & Sherrard, J., 2006. "Application efficiencies and furrow infiltration functions of irrigations in sugar cane in the Ord River Irrigation Area of North Western Australia and the scope for improvement," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 162-172, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:206:y:2018:i:c:p:78-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.