IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v201y2018icp27-37.html
   My bibliography  Save this article

Border irrigation performance with distance-based cut-off

Author

Listed:
  • Salahou, Mohamed Khaled
  • Jiao, Xiyun
  • Lü, Haishen

Abstract

Border irrigation is widely practised for winter wheat production on the North China Plain. Winter wheat is mainly irrigated with groundwater as a supplement to insufficient precipitation to maintain high agricultural production. As a result of the increased demands for water, groundwater levels have declined. Therefore, improvements to border irrigation performance and water use efficiency are urgently needed. The objective of this study was to determine the optimal distance at which to cut off inflow under different inflow rate conditions in closed-ended border systems. The experimental treatments included three inflow rates (high, moderate, and low, with average rates of 6.91 l s−1 m−1, 4.95 l s−1 m−1, and 2.81 l s−1 m−1, respectively) and three cut-off ratios (CRs) arranged in three replications at the CAS Ecological Agricultural Experiment Station in Nanpi, Hebei Province, China. The surface irrigation hydraulic simulation model WinSRFR was used to examine the sensitivity of the existing design to a range of bottom slopes, surface roughness values, and inflow rates to demonstrate the robustness of the solutions in terms of their application efficiency and low-quarter distribution uniformity. The results present the optimum CR values for different inflow rate conditions to maximize irrigation performance. The results indicate that irrigation performance above the optimum CR values for high, moderate, and low inflow rates is not very sensitive to bottom slope, and no substantial changes in performance were noted when Manning’s roughness coefficient was between 0.04 and 0.09. A set of inflow rate ranges that corresponds to the recommended CRs that could achieve high irrigation performance is presented.

Suggested Citation

  • Salahou, Mohamed Khaled & Jiao, Xiyun & Lü, Haishen, 2018. "Border irrigation performance with distance-based cut-off," Agricultural Water Management, Elsevier, vol. 201(C), pages 27-37.
  • Handle: RePEc:eee:agiwat:v:201:y:2018:i:c:p:27-37
    DOI: 10.1016/j.agwat.2018.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741830060X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bautista, E. & Clemmens, A.J. & Strelkoff, T.S. & Schlegel, J., 2009. "Modern analysis of surface irrigation systems with WinSRFR," Agricultural Water Management, Elsevier, vol. 96(7), pages 1146-1154, July.
    2. Morris, Michael R. & Hussain, Amjed & Gillies, Malcolm H. & O’Halloran, Nicholas J., 2015. "Inflow rate and border irrigation performance," Agricultural Water Management, Elsevier, vol. 155(C), pages 76-86.
    3. González, César & Cervera, Luis & Moret-Fernández, David, 2011. "Basin irrigation design with longitudinal slope," Agricultural Water Management, Elsevier, vol. 98(10), pages 1516-1522, August.
    4. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    5. Bautista, E. & Clemmens, A.J. & Strelkoff, T.S. & Niblack, M., 2009. "Analysis of surface irrigation systems with WinSRFR--Example application," Agricultural Water Management, Elsevier, vol. 96(7), pages 1162-1169, July.
    6. Reddy, J. Mohan & Jumaboev, K. & Matyakubov, B. & Eshmuratov, D., 2013. "Evaluation of furrow irrigation practices in Fergana Valley of Uzbekistan," Agricultural Water Management, Elsevier, vol. 117(C), pages 133-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Jiatun & Cai, Huanjie & Saddique, Qaisar & Wang, Xiaoyun & Li, Liang & Ma, Chenguang & Lu, Yajun, 2019. "Evaluation and optimization of border irrigation in different irrigation seasons based on temporal variation of infiltration and roughness," Agricultural Water Management, Elsevier, vol. 214(C), pages 64-77.
    2. Jiao, Maqian & Yang, Wenhan & Hu, Wei & Clothier, Brent & Zou, Songyan & Li, Doudou & Di, Nan & Liu, Jinqiang & Liu, Yang & Duan, Jie & Xi, Benye, 2021. "The optimal tensiometer installation position for scheduling border irrigation in Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 253(C).
    3. Mazarei, Reza & Soltani Mohammadi, Amir & Ebrahimian, Hamed & Naseri, Abd Ali, 2021. "Temporal variability of infiltration and roughness coefficients and furrow irrigation performance under different inflow rates," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    5. Mehri, Akbar & Mohammadi, Amir Soltani & Ebrahimian, Hamed & Boroomandnasab, Saeid, 2023. "Evaluation and optimization of surge and alternate furrow irrigation performance in maize fields using the WinSRFR software," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Mazarei, Reza & Mohammadi, Amir Soltani & Naseri, Abd Ali & Ebrahimian, Hamed & Izadpanah, Zahra, 2020. "Optimization of furrow irrigation performance of sugarcane fields based on inflow and geometric parameters using WinSRFR in Southwest of Iran," Agricultural Water Management, Elsevier, vol. 228(C).
    7. Pazouki, Ehsan, 2021. "A practical surface irrigation system design based on volume balance model and multi-objective evolutionary optimization algorithms," Agricultural Water Management, Elsevier, vol. 248(C).
    8. Pazouki, Ehsan, 2021. "A practical surface irrigation design based on fuzzy logic and meta-heuristic algorithms," Agricultural Water Management, Elsevier, vol. 256(C).
    9. Pazouki, Ehsan, 2023. "A smart surface irrigation design based on the topographical and geometrical shape characteristics of the land," Agricultural Water Management, Elsevier, vol. 275(C).
    10. Costabile, Pierfranco & Costanzo, Carmelina & Gangi, Fabiola & De Gaetani, Carlo Iapige & Rossi, Lorenzo & Gandolfi, Claudio & Masseroni, Daniele, 2023. "High-resolution 2D modelling for simulating and improving the management of border irrigation," Agricultural Water Management, Elsevier, vol. 275(C).
    11. Nie, Wei-Bo & Li, Yi-Bo & Zhang, Fan & Ma, Xiao-Yi, 2019. "Optimal discharge for closed-end border irrigation under soil infiltration variability," Agricultural Water Management, Elsevier, vol. 221(C), pages 58-65.
    12. Fadul, E. & Masih, I. & De Fraiture, C. & Suryadi, F.X., 2020. "Irrigation performance under alternative field designs in a spate irrigation system with large field dimensions," Agricultural Water Management, Elsevier, vol. 231(C).
    13. Mohamed Khaled Salahou & Xiyun Jiao & Haishen Lü & Weihua Guo, 2020. "An improved approach to estimating the infiltration characteristics in surface irrigation systems," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazarei, Reza & Mohammadi, Amir Soltani & Naseri, Abd Ali & Ebrahimian, Hamed & Izadpanah, Zahra, 2020. "Optimization of furrow irrigation performance of sugarcane fields based on inflow and geometric parameters using WinSRFR in Southwest of Iran," Agricultural Water Management, Elsevier, vol. 228(C).
    2. Xu, Jiatun & Cai, Huanjie & Saddique, Qaisar & Wang, Xiaoyun & Li, Liang & Ma, Chenguang & Lu, Yajun, 2019. "Evaluation and optimization of border irrigation in different irrigation seasons based on temporal variation of infiltration and roughness," Agricultural Water Management, Elsevier, vol. 214(C), pages 64-77.
    3. Akbari, Mahmood & Gheysari, Mahdi & Mostafazadeh-Fard, Behrouz & Shayannejad, Mohammad, 2018. "Surface irrigation simulation-optimization model based on meta-heuristic algorithms," Agricultural Water Management, Elsevier, vol. 201(C), pages 46-57.
    4. Mazarei, Reza & Soltani Mohammadi, Amir & Ebrahimian, Hamed & Naseri, Abd Ali, 2021. "Temporal variability of infiltration and roughness coefficients and furrow irrigation performance under different inflow rates," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Kaihua Liu & Xiyun Jiao & Weihua Guo & Yunhao An & Mohamed Khaled Salahou, 2020. "Improving border irrigation performance with predesigned varied-discharge," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-12, May.
    6. Costabile, Pierfranco & Costanzo, Carmelina & Gangi, Fabiola & De Gaetani, Carlo Iapige & Rossi, Lorenzo & Gandolfi, Claudio & Masseroni, Daniele, 2023. "High-resolution 2D modelling for simulating and improving the management of border irrigation," Agricultural Water Management, Elsevier, vol. 275(C).
    7. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    8. Mohamed Khaled Salahou & Xiyun Jiao & Haishen Lü & Weihua Guo, 2020. "An improved approach to estimating the infiltration characteristics in surface irrigation systems," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    9. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Morris, Michael R. & Hussain, Amjed & Gillies, Malcolm H. & O’Halloran, Nicholas J., 2015. "Inflow rate and border irrigation performance," Agricultural Water Management, Elsevier, vol. 155(C), pages 76-86.
    11. Pazouki, Ehsan, 2021. "A practical surface irrigation design based on fuzzy logic and meta-heuristic algorithms," Agricultural Water Management, Elsevier, vol. 256(C).
    12. Mehri, Akbar & Mohammadi, Amir Soltani & Ebrahimian, Hamed & Boroomandnasab, Saeid, 2023. "Evaluation and optimization of surge and alternate furrow irrigation performance in maize fields using the WinSRFR software," Agricultural Water Management, Elsevier, vol. 276(C).
    13. Pazouki, Ehsan, 2021. "A practical surface irrigation system design based on volume balance model and multi-objective evolutionary optimization algorithms," Agricultural Water Management, Elsevier, vol. 248(C).
    14. Nie, Wei-Bo & Li, Yi-Bo & Zhang, Fan & Ma, Xiao-Yi, 2019. "Optimal discharge for closed-end border irrigation under soil infiltration variability," Agricultural Water Management, Elsevier, vol. 221(C), pages 58-65.
    15. Devkota, Krishna Prasad & Yadav, Sudhir & Humphreys, E. & Kumar, Akhilesh & Kumar, Pankaj & Kumar, Virender & Malik, R.K. & Srivastava, Amit K., 2021. "Land gradient and configuration effects on yield, irrigation amount and irrigation water productivity in rice-wheat and maize-wheat cropping systems in Eastern India," Agricultural Water Management, Elsevier, vol. 255(C).
    16. Pazouki, Ehsan, 2023. "A smart surface irrigation design based on the topographical and geometrical shape characteristics of the land," Agricultural Water Management, Elsevier, vol. 275(C).
    17. Mirshadiev, Mirzokhid & Fleskens, Luuk & van Dam, Jos & Pulatov, Alim, 2018. "Scoping of promising land management and water use practices in the dry areas of Uzbekistan," Agricultural Water Management, Elsevier, vol. 207(C), pages 15-25.
    18. Fadul, E. & Masih, I. & De Fraiture, C. & Suryadi, F.X., 2020. "Irrigation performance under alternative field designs in a spate irrigation system with large field dimensions," Agricultural Water Management, Elsevier, vol. 231(C).
    19. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    20. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:201:y:2018:i:c:p:27-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.