IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v142y2014icp77-87.html
   My bibliography  Save this article

Evaluating the performance of a real-time optimisation system for furrow irrigation

Author

Listed:
  • Koech, R.K.
  • Smith, R.J.
  • Gillies, M.H.

Abstract

This paper reports the performance evaluations undertaken on a real-time optimisation system for furrow irrigation (AutoFurrow). Trials for the system were undertaken on commercial furrow-irrigated cotton properties near St George and Dalby, Queensland Australia. The system performed robustly in the field and demonstrated its potential for substantial water savings; however, the results suggested that there was further scope for improvement in performance. To identify opportunities for improvement, the surface irrigation simulation model SISCO was used to investigate the effect of varying: the objective function, flow rate, irrigation deficit, infiltration scaling process and the model infiltration curve. It was found that a simple objective function that aims to maximise application efficiency (AE) can deliver accurate prediction of the irrigation performance and potentially add to the robustness of the optimisation process. It was also demonstrated that if a suitable flow rate is selected initially, then no further change is warranted. The predicted time to cut-off (TCO) was relatively insensitive to the irrigation deficit; however, any change in the irrigation deficit altered the AE predicted.

Suggested Citation

  • Koech, R.K. & Smith, R.J. & Gillies, M.H., 2014. "Evaluating the performance of a real-time optimisation system for furrow irrigation," Agricultural Water Management, Elsevier, vol. 142(C), pages 77-87.
  • Handle: RePEc:eee:agiwat:v:142:y:2014:i:c:p:77-87
    DOI: 10.1016/j.agwat.2014.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414001395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, R.J. & Raine, S.R. & Minkevich, J., 2005. "Irrigation application efficiency and deep drainage potential under surface irrigated cotton," Agricultural Water Management, Elsevier, vol. 71(2), pages 117-130, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costanzo, Carmelina & Costabile, Pierfranco & Gangi, Fabiola & Argirò, Giuseppe & Bautista, Eduardo & Gandolfi, Claudio & Masseroni, Daniele, 2024. "Promoting precision surface irrigation through hydrodynamic modelling and microtopographic survey," Agricultural Water Management, Elsevier, vol. 301(C).
    2. Smith, R.J. & Uddin, M.J. & Gillies, M.H., 2018. "Estimating irrigation duration for high performance furrow irrigation on cracking clay soils," Agricultural Water Management, Elsevier, vol. 206(C), pages 78-85.
    3. Nie, Wei-Bo & Li, Yi-Bo & Zhang, Fan & Ma, Xiao-Yi, 2019. "Optimal discharge for closed-end border irrigation under soil infiltration variability," Agricultural Water Management, Elsevier, vol. 221(C), pages 58-65.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costabile, Pierfranco & Costanzo, Carmelina & Gangi, Fabiola & De Gaetani, Carlo Iapige & Rossi, Lorenzo & Gandolfi, Claudio & Masseroni, Daniele, 2023. "High-resolution 2D modelling for simulating and improving the management of border irrigation," Agricultural Water Management, Elsevier, vol. 275(C).
    2. Darouich, Hanaa & Gonçalves, José M. & Muga, André & Pereira, Luis S., 2012. "Water saving vs. farm economics in cotton surface irrigation: An application of multicriteria analysis," Agricultural Water Management, Elsevier, vol. 115(C), pages 223-231.
    3. Smith, RJ & Uddin, MJ, 2020. "Selection of flow rate and irrigation duration for high performance bay irrigation," Agricultural Water Management, Elsevier, vol. 228(C).
    4. Mehri, Akbar & Mohammadi, Amir Soltani & Ebrahimian, Hamed & Boroomandnasab, Saeid, 2023. "Evaluation and optimization of surge and alternate furrow irrigation performance in maize fields using the WinSRFR software," Agricultural Water Management, Elsevier, vol. 276(C).
    5. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    6. Masseroni, Daniele & Moller, Peter & Tyrell, Reece & Romani, Marco & Lasagna, Alberto & Sali, Guido & Facchi, Arianna & Gandolfi, Claudio, 2018. "Evaluating performances of the first automatic system for paddy irrigation in Europe," Agricultural Water Management, Elsevier, vol. 201(C), pages 58-69.
    7. Bakker, D.M. & Plunkett, G. & Sherrard, J., 2006. "Application efficiencies and furrow infiltration functions of irrigations in sugar cane in the Ord River Irrigation Area of North Western Australia and the scope for improvement," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 162-172, May.
    8. Bai, Youshuai & Zhang, Hengjia & Jia, Shenghai & Huang, Caixia & Zhao, Xia & Wei, Huiqin & Yang, Shurui & Ma, Yan & Kou, Rui, 2022. "Plastic film mulching combined with sand tube irrigation improved yield, water use efficiency, and fruit quality of jujube in an arid desert area of Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Devkota, Krishna Prasad & Yadav, Sudhir & Humphreys, E. & Kumar, Akhilesh & Kumar, Pankaj & Kumar, Virender & Malik, R.K. & Srivastava, Amit K., 2021. "Land gradient and configuration effects on yield, irrigation amount and irrigation water productivity in rice-wheat and maize-wheat cropping systems in Eastern India," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Smith, R.J. & Uddin, M.J. & Gillies, M.H., 2018. "Estimating irrigation duration for high performance furrow irrigation on cracking clay soils," Agricultural Water Management, Elsevier, vol. 206(C), pages 78-85.
    11. Petheram, Cuan & Bristow, Keith L. & Nelson, Paul N., 2008. "Understanding and managing groundwater and salinity in a tropical conjunctive water use irrigation district," Agricultural Water Management, Elsevier, vol. 95(10), pages 1167-1179, October.
    12. Yan Zhu & Huanjie Cai & Libing Song & Xiaowen Wang & Zihui Shang & Yanan Sun, 2020. "Aerated Irrigation of Different Irrigation Levels and Subsurface Dripper Depths Affects Fruit Yield, Quality and Water Use Efficiency of Greenhouse Tomato," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    13. Xu, Jiatun & Cai, Huanjie & Saddique, Qaisar & Wang, Xiaoyun & Li, Liang & Ma, Chenguang & Lu, Yajun, 2019. "Evaluation and optimization of border irrigation in different irrigation seasons based on temporal variation of infiltration and roughness," Agricultural Water Management, Elsevier, vol. 214(C), pages 64-77.
    14. Mazarei, Reza & Soltani Mohammadi, Amir & Ebrahimian, Hamed & Naseri, Abd Ali, 2021. "Temporal variability of infiltration and roughness coefficients and furrow irrigation performance under different inflow rates," Agricultural Water Management, Elsevier, vol. 245(C).
    15. Richards, Q.D. & Bange, M.P. & Johnston, S.B., 2008. "HydroLOGIC: An irrigation management system for Australian cotton," Agricultural Systems, Elsevier, vol. 98(1), pages 40-49, July.
    16. Mazarei, Reza & Mohammadi, Amir Soltani & Naseri, Abd Ali & Ebrahimian, Hamed & Izadpanah, Zahra, 2020. "Optimization of furrow irrigation performance of sugarcane fields based on inflow and geometric parameters using WinSRFR in Southwest of Iran," Agricultural Water Management, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:142:y:2014:i:c:p:77-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.