IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v272y2022ics0378377422003857.html
   My bibliography  Save this article

Managing spatial irrigation using remote-sensing-based evapotranspiration and soil water adaptive control model

Author

Listed:
  • Maguire, Mitchell S.
  • Neale, Christopher M.U.
  • Woldt, Wayne E.
  • Heeren, Derek M.

Abstract

Irrigation has traditionally been managed as uniform applications where an entire field receives the same depth of water. Motivation to improve current irrigation practices has led to different approaches utilizing remotely-sensed images to inform variable rate irrigation management. This study conducted in 2019 and 2020 implemented the Spatial EvapoTranspiration Modeling Interface (SETMI), a remote-sensing-based evapotranspiration (ET) and water balance model, for managing variable rate irrigation of a maize and soybean field. This model tracked soil water content through the estimation of daily ET and tracking of various water fluxes entering and leaving a field. SETMI was used in two different irrigation treatments informed using Planet satellite (SETMI-SAT) and unmanned aerial system (UAS, SETMI-UAS) remotely-sensed images. A uniform irrigation approach managed by a professional crop consultant and a non-irrigated approach were used as the baseline in comparing irrigation management approaches. The irrigation treatments were evaluated on dry grain yield, gross irrigation, actual ET, deep percolation, change in soil water content, and water productivity. The uniform irrigation approach managed by the crop consultant applied the highest irrigation in 2019 and 2020 for maize (2019: 155 mm, 2020: 213 mm) and soybean (2019: 124 mm; 2020: 183 mm) while the SETMI irrigation treatments applied less irrigation for maize (2019: 131, 132 mm; 2020: 154, 140 mm) and soybean (2019: 116, 94 mm; 2020: 154, 175 mm). Maize yield was highest for the uniform irrigation approach in 2019 (14.9 Mg ha−1) and 2020 (13.3 Mg ha−1). The highest soybean yield was produced by the SETMI-SAT irrigation management approach in 2019 (5.0 Mg ha−1) and 2020 (4.8 Mg ha−1). Significant differences (p-value < 0.05) in applied irrigation between the uniform and SETMI irrigation management approaches were observed while there were no significant differences in dry grain yield for both maize and soybean in 2019 and 2020. At least one of the SETMI irrigation treatments produced higher crop, irrigation, and ET water productivity values in comparison to those produced by the uniform irrigation treatment for all crop-years. A post-season analysis was completed using the SETMI-UAS and SETMI-SAT treatments to evaluate the accuracy of estimated rootzone soil water depletion provided by SETMI. Rootzone depletion calculated from neutron probe volumetric soil water content measurements were compared to the modeled depletion from the SETMI-UAS and SETMI-SAT treatments. The 2020 modeled and measured depletion comparison produced better agreement resulting in a root mean squared error (RMSE) < 17 mm compared to 2019 (RMSE < 27 mm). The VRI center pivot malfunctioned during the 2019 season which caused unresolved discrepancies between actually applied irrigation and what the system was programmed to apply. The VRI system was fixed before the 2020 season.

Suggested Citation

  • Maguire, Mitchell S. & Neale, Christopher M.U. & Woldt, Wayne E. & Heeren, Derek M., 2022. "Managing spatial irrigation using remote-sensing-based evapotranspiration and soil water adaptive control model," Agricultural Water Management, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:agiwat:v:272:y:2022:i:c:s0378377422003857
    DOI: 10.1016/j.agwat.2022.107838
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422003857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhatti, Sandeep & Heeren, Derek M. & Barker, J. Burdette & Neale, Christopher M.U. & Woldt, Wayne E. & Maguire, Mitchell S. & Rudnick, Daran R., 2020. "Site-specific irrigation management in a sub-humid climate using a spatial evapotranspiration model with satellite and airborne imagery," Agricultural Water Management, Elsevier, vol. 230(C).
    2. Campos, Isidro & Neale, Christopher M.U. & Suyker, Andrew E. & Arkebauer, Timothy J. & Gonçalves, Ivo Z., 2017. "Reflectance-based crop coefficients REDUX: For operational evapotranspiration estimates in the age of high producing hybrid varieties," Agricultural Water Management, Elsevier, vol. 187(C), pages 140-153.
    3. Barker, J. Burdette & Heeren, Derek M. & Neale, Christopher M.U. & Rudnick, Daran R., 2018. "Evaluation of variable rate irrigation using a remote-sensing-based model," Agricultural Water Management, Elsevier, vol. 203(C), pages 63-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhatti, Sandeep & Heeren, Derek M. & Evett, Steven R. & O’Shaughnessy, Susan A. & Rudnick, Daran R. & Franz, Trenton E. & Ge, Yufeng & Neale, Christopher M.U., 2022. "Crop response to thermal stress without yield loss in irrigated maize and soybean in Nebraska," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Li, Maona & Wang, Yunling & Guo, Hui & Ding, Feng & Yan, Haijun, 2023. "Evaluation of variable rate irrigation management in forage crops: Saving water and increasing water productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    3. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    4. Bhatti, Sandeep & Heeren, Derek M. & Barker, J. Burdette & Neale, Christopher M.U. & Woldt, Wayne E. & Maguire, Mitchell S. & Rudnick, Daran R., 2020. "Site-specific irrigation management in a sub-humid climate using a spatial evapotranspiration model with satellite and airborne imagery," Agricultural Water Management, Elsevier, vol. 230(C).
    5. O’Shaughnessy, Susan A. & Kim, Minyoung & Andrade, Manuel A. & Colaizzi, Paul D. & Evett, Steven R., 2020. "Site-specific irrigation of grain sorghum using plant and soil water sensing feedback - Texas High Plains," Agricultural Water Management, Elsevier, vol. 240(C).
    6. Singh, Jasreman & Ge, Yufeng & Heeren, Derek M. & Walter-Shea, Elizabeth & Neale, Christopher M.U. & Irmak, Suat & Woldt, Wayne E. & Bai, Geng & Bhatti, Sandeep & Maguire, Mitchell S., 2021. "Inter-relationships between water depletion and temperature differential in row crop canopies in a sub-humid climate," Agricultural Water Management, Elsevier, vol. 256(C).
    7. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    8. El-Naggar, A.G. & Hedley, C.B. & Horne, D. & Roudier, P. & Clothier, B.E., 2020. "Soil sensing technology improves application of irrigation water," Agricultural Water Management, Elsevier, vol. 228(C).
    9. Bispo, R.C. & Hernandez, F.B.T. & Gonçalves, I.Z. & Neale, C.M.U. & Teixeira, A.H.C., 2022. "Remote sensing based evapotranspiration modeling for sugarcane in Brazil using a hybrid approach," Agricultural Water Management, Elsevier, vol. 271(C).
    10. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    11. Barker, J. Burdette & Heeren, Derek M. & Neale, Christopher M.U. & Rudnick, Daran R., 2018. "Evaluation of variable rate irrigation using a remote-sensing-based model," Agricultural Water Management, Elsevier, vol. 203(C), pages 63-74.
    12. Xue, Jingyuan & Fulton, Allan & Kisekka, Isaya, 2021. "Evaluating the role of remote sensing-based energy balance models in improving site-specific irrigation management for young walnut orchards," Agricultural Water Management, Elsevier, vol. 256(C).
    13. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    14. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    15. Lo, Tsz Him & Rudnick, Daran R. & Singh, Jasreman & Nakabuye, Hope Njuki & Katimbo, Abia & Heeren, Derek M. & Ge, Yufeng, 2020. "Field assessment of interreplicate variability from eight electromagnetic soil moisture sensors," Agricultural Water Management, Elsevier, vol. 231(C).
    16. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Kelechi Igwe & Vaishali Sharda & Trevor Hefley, 2023. "Evaluating the Impact of Future Seasonal Climate Extremes on Crop Evapotranspiration of Maize in Western Kansas Using a Machine Learning Approach," Land, MDPI, vol. 12(8), pages 1-26, July.
    18. Hui, Xin & Lin, Xueji & Zhao, Yue & Xue, Mengyun & Zhuo, Yue & Guo, Hui & Xu, Yuncheng & Yan, Haijun, 2022. "Assessing water distribution characteristics of a variable-rate irrigation system," Agricultural Water Management, Elsevier, vol. 260(C).
    19. Said A. Hamido & Kelly T. Morgan, 2021. "The Effect of Irrigation Rate on the Water Relations of Young Citrus Trees in High-Density Planting," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    20. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:272:y:2022:i:c:s0378377422003857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.