IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v201y2018icp188-198.html
   My bibliography  Save this article

Estimation and partitioning of actual daily evapotranspiration at an intensive olive grove using the STSEB model based on remote sensing

Author

Listed:
  • Häusler, Melanie
  • Conceição, Nuno
  • Tezza, Luca
  • Sánchez, Juan M.
  • Campagnolo, Manuel L.
  • Häusler, Andreas J.
  • Silva, João M.N.
  • Warneke, Thorsten
  • Heygster, Georg
  • Ferreira, M. Isabel

Abstract

This study is based on the application of an existing simplified two-source energy balance (STSEB) model, using medium-resolution satellite imagery (Landsat) to estimate instantaneous (at the satellite overpass time) and daily actual crop evapotranspiration (ETa) over an intensive olive grove. Daily values were obtained by the use of the evaporative fraction method and corrected for latent heat, available energy, and evaporative fraction biases (beta-factor correction). Model estimates were compared to ground-based measurements. Heat flux densities (eddy covariance method) were recorded, and five Landsat images at approximately monthly intervals were used, covering our study site in 2011. Comparison with ground measurements showed a maximum difference of −0.6 mm day−1 before, and 0.2 mm day−1 after beta-factor correction for the main plot.

Suggested Citation

  • Häusler, Melanie & Conceição, Nuno & Tezza, Luca & Sánchez, Juan M. & Campagnolo, Manuel L. & Häusler, Andreas J. & Silva, João M.N. & Warneke, Thorsten & Heygster, Georg & Ferreira, M. Isabel, 2018. "Estimation and partitioning of actual daily evapotranspiration at an intensive olive grove using the STSEB model based on remote sensing," Agricultural Water Management, Elsevier, vol. 201(C), pages 188-198.
  • Handle: RePEc:eee:agiwat:v:201:y:2018:i:c:p:188-198
    DOI: 10.1016/j.agwat.2018.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418300775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Conceição, Nuno & Tezza, Luca & Häusler, Melanie & Lourenço, Sónia & Pacheco, Carlos A. & Ferreira, M. Isabel, 2017. "Three years of monitoring evapotranspiration components and crop and stress coefficients in a deficit irrigated intensive olive orchard," Agricultural Water Management, Elsevier, vol. 191(C), pages 138-152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awada, Hassan & Di Prima, Simone & Sirca, Costantino & Giadrossich, Filippo & Marras, Serena & Spano, Donatella & Pirastru, Mario, 2022. "A remote sensing and modeling integrated approach for constructing continuous time series of daily actual evapotranspiration," Agricultural Water Management, Elsevier, vol. 260(C).
    2. Valentín, Francisco & Sánchez, Juan Manuel & Martínez-Moreno, Alejandro & Intrigliolo, Diego S. & Buesa, Ignacio & López-Urrea, Ramón, 2023. "Using on-the-ground surface energy balance to monitor vine water status and evapotranspiration under deficit irrigation and rainfed conditions," Agricultural Water Management, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    2. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    3. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    4. Peddinti, Srinivasa Rao & Kambhammettu, BVN P, 2019. "Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques," Agricultural Water Management, Elsevier, vol. 212(C), pages 68-77.
    5. Hui Cao & Hongbo Wang & Yong Li & Abdoul Kader Mounkaila Hamani & Nan Zhang & Xingpeng Wang & Yang Gao, 2021. "Evapotranspiration Partition and Dual Crop Coefficients in Apple Orchard with Dwarf Stocks and Dense Planting in Arid Region, Aksu Oasis, Southern Xinjiang," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    6. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    7. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Alexandre, Carlos & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use, soil water balance and soil salinization risks of Mediterranean tree orchards in southern Portugal under current climate variability: Issues for salinity control and irrigation management," Agricultural Water Management, Elsevier, vol. 283(C).
    8. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:201:y:2018:i:c:p:188-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.