IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v197y2018icp34-40.html
   My bibliography  Save this article

Assessing explanatory factors for variation in on-farm irrigation in US maize-soybean systems

Author

Listed:
  • Gibson, Katherine E.B.
  • Yang, Haishun S.
  • Franz, Trenton
  • Eisenhauer, Dean
  • Gates, John B.
  • Nasta, Paolo
  • Farmaha, Bhupinder S.
  • Grassini, Patricio

Abstract

Irrigation exhibits large variation across producer fields, even within same region and year. A knowledge gap exists relative to factors that explain this variation, in part due to lack of availability of high-quality irrigation data from multiple field-years. This study assessed sources of variation in irrigation using a large database collected during 9 years (2005–2013) from ca. 1400 maize and soybean producer fields in Nebraska, central USA (total of 12,750 field-year observations). The study area is representative of ca. 4.5 million ha of irrigated land sown with maize and soybean. Influence of biophysical (weather, soil, and crop type) and behavioral (producer skills, risk aversion) factors on irrigation was investigated. Field irrigation distributions showed a substantial number of fields received irrigation amounts that were well above average irrigation for same region-year. Variation in irrigation across fields, within the same region, was as large as year-to-year variation. Seasonal water deficit (defined as total reference evapotranspiration minus precipitation), soil available water holding capacity, and crop type explained about half of observed variation in field irrigation, indicating that producers adjusted irrigation depending upon site-year variation in these parameters. However, half of the variation in irrigation remained unexplained, indicating that producer behavior and skills play also an important role. There was evidence of a “neighbor” effect as fields that received large irrigation were surrounded by other fields with similarly large irrigation. Likewise, fields with above- or below-average irrigation in one year remained consistently above and below regional average irrigation, respectively, in other years despite similarity in weather and soil among fields. These findings indicate that irrigation decisions are influenced by both biophysical and behavioral factors, making predictions of field and regional irrigation extremely difficult. This study highlights the value of collecting on-farm irrigation data to understand producer decision-making and find opportunities to improve current water management in irrigated crop systems.

Suggested Citation

  • Gibson, Katherine E.B. & Yang, Haishun S. & Franz, Trenton & Eisenhauer, Dean & Gates, John B. & Nasta, Paolo & Farmaha, Bhupinder S. & Grassini, Patricio, 2018. "Assessing explanatory factors for variation in on-farm irrigation in US maize-soybean systems," Agricultural Water Management, Elsevier, vol. 197(C), pages 34-40.
  • Handle: RePEc:eee:agiwat:v:197:y:2018:i:c:p:34-40
    DOI: 10.1016/j.agwat.2017.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417303608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Droogers, P. & Immerzeel, W.W. & Lorite, I.J., 2010. "Estimating actual irrigation application by remotely sensed evapotranspiration observations," Agricultural Water Management, Elsevier, vol. 97(9), pages 1351-1359, September.
    2. Mullen, Jeffrey D. & Yu, Yingzhuo & Hoogenboom, Gerrit, 2009. "Estimating the demand for irrigation water in a humid climate: A case study from the southeastern United States," Agricultural Water Management, Elsevier, vol. 96(10), pages 1421-1428, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilian Rodrigues Ribeiro & Morgana Scaramussa Gonçalves & Daniel Soares Ferreira & Dalila Costa Gonçalves & Samira Luns Hatum Almeida & Ramon Amaro Sales & Felipe Cunha Siman & Luan Peroni Venancio & , 2022. "Water demand of central pivot-irrigated areas in Bahia, Brazil: management of water resources applied to sustainable production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12340-12366, October.
    2. Salgado, Ramiro & Mateos, Luciano, 2021. "Evaluation of different methods of estimating ET for the performance assessment of irrigation schemes," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    4. Ruchie Pathak & Nicholas R. Magliocca, 2022. "Assessing the Representativeness of Irrigation Adoption Studies: A Meta-Study of Global Research," Agriculture, MDPI, vol. 12(12), pages 1-31, December.
    5. dos Santos Almeida, Alexsandro Claudio & Mamédio, Mário Roberto & Goelzer, Ademar & Rodrigues, Lucas Araujo & Mateos, Luciano, 2023. "Shared centre pivot. An experience of smallholder irrigation in Midwest Brazil," Agricultural Water Management, Elsevier, vol. 275(C).
    6. Gao, Zitian & Guo, Danlu & Ryu, Dongryeol & Western, Andrew W., 2024. "Exploring key factors driving farm-level seasonal irrigation water usage with Bayesian hierarchical modelling," Agricultural Water Management, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.
    2. Boyer, Christopher N. & Larson, James A. & Roberts, Roland K. & McClure, Angela T. & Tyler, Donald D. & Smith, S. Aaron, 2014. "Probability of Irrigated Corn Being Profitable in a Humid Region," 2014 Annual Meeting, February 1-4, 2014, Dallas, Texas 162470, Southern Agricultural Economics Association.
    3. Battude, Marjorie & Al Bitar, Ahmad & Brut, Aurore & Tallec, Tiphaine & Huc, Mireille & Cros, Jérôme & Weber, Jean-Jacques & Lhuissier, Ludovic & Simonneaux, Vincent & Demarez, Valérie, 2017. "Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery," Agricultural Water Management, Elsevier, vol. 189(C), pages 123-136.
    4. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    5. Amir Sedaghatdoost & Hamed Ebrahimian & Abdolmajid Liaghat, 2019. "An Inverse Modeling Approach to Calibrate Parameters for a Drainage Model with Two Optimization Algorithms on Homogeneous/Heterogeneous Soil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1383-1395, March.
    6. Levan Elbakidze & Brett Schiller & R. Garth Taylor, 2017. "Estimation of Short and Long Run Derived Irrigation Water Demands and Elasticities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-22, January.
    7. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).
    8. Silva, Felipe & Perrin, Richard K. & Fulginiti, Lilyan E. & Schoengold, Karina, 2017. "The Effects of Irrigation and Climate on the High Plains Aquifer: An econometric analysis of groundwater levels and irrigation behavior," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259183, Agricultural and Applied Economics Association.
    9. Mullen, Jeffrey D., 2011. "Statewide Water Planning: The Georgia Experience," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 357-366, August.
    10. Rajapaksha P. D. Gunathilaka & James C. R. Smart & Christopher M. Fleming & Syezlin Hasan, 2018. "The impact of climate change on labour demand in the plantation sector: the case of tea production in Sri Lanka," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 480-500, July.
    11. Fuentes, Ignacio & Vervoort, R. Willem & McPhee, James & Rojas, Luis A. Reyes, 2024. "Agricultural water accounting: Complementing a governance monitoring schema with remote sensing calculations at different scales," Agricultural Water Management, Elsevier, vol. 292(C).
    12. Boyer, Christopher N. & Larson, James A. & Roberts, Roland K. & McClure, Angela T. & Tyler, Donald D., 2014. "The impact of field size and energy cost on the profitability of supplemental corn irrigation," Agricultural Systems, Elsevier, vol. 127(C), pages 61-69.
    13. Lee, Gi-Eu & Rollins, Kimberly S. & Singletary, Loretta, 2018. "Farm-level Cropping Decision and Irrigation Water Use under Both Institutional and Hydrological Constraints," 2018 Annual Meeting, August 5-7, Washington, D.C. 274321, Agricultural and Applied Economics Association.
    14. Zhou, Qing & Zhang, Yali & Wu, Feng, 2021. "Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China," Agricultural Water Management, Elsevier, vol. 246(C).
    15. Ahmad, Mobin-ud-Din & Peña-Arancibia, Jorge L. & Stewart, Joel P. & Kirby, John M., 2021. "Water balance trends in irrigated canal commands and its implications for sustainable water management in Pakistan: Evidence from 1981 to 2012," Agricultural Water Management, Elsevier, vol. 245(C).
    16. Tsigkou, Stavroula & Messer, Kent D. & Kecinski, Maik & Li, Tongzhe, 2021. "The impact of nontraditional irrigation water on consumers’ perception of food and non-food items: A field experiment in the United States," 2021 Annual Meeting, August 1-3, Austin, Texas 313940, Agricultural and Applied Economics Association.
    17. Yousfi, Salima & Kellas, Nassim & Saidi, Lila & Benlakehal, Zahra & Chaou, Lydia & Siad, Djamila & Herda, Farid & Karrou, Mohamed & Vergara, Omar & Gracia, Adrian & Araus, José Luis & Serret, Maria Do, 2016. "Comparative performance of remote sensing methods in assessing wheat performance under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 164(P1), pages 137-147.
    18. Ajaz, Ali & Karimi, Poolad & Cai, Xueliang & De Fraiture, Charlotte & Akhter, Muhammad Saleem, 2019. "Statistical Data Collection Methodologies of Irrigated Areas and Their Limitations: A Review," OSF Preprints cmahg, Center for Open Science.
    19. Funk, Bryana & Amer, Saud A. & Ward, Frank A., 2023. "Sustainable aquifer management for food security," Agricultural Water Management, Elsevier, vol. 281(C).
    20. Toureiro, Célia & Serralheiro, Ricardo & Shahidian, Shakib & Sousa, Adélia, 2017. "Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition," Agricultural Water Management, Elsevier, vol. 184(C), pages 211-220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:197:y:2018:i:c:p:34-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.