IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v180y2017ipbp235-251.html
   My bibliography  Save this article

Modeling of nutrient export and effects of management practices in a cold-climate prairie watershed: Assiniboine River watershed, Canada

Author

Listed:
  • Mekonnen, Balew A.
  • Mazurek, Kerry A.
  • Putz, Gordon

Abstract

Non-point source pollution due to agricultural activities is an important problem that has been threatening water resources in Canadian prairie watersheds. The development of strategies to prevent nutrient loss depends on the quantification of nutrient mobilization and transport across a watershed. Integrated eco-hydrological models can play an important role in this regard. However, current model applicability to cold-climate Canadian prairie watersheds is limited due to the complex dynamics of nutrient export under the existence of numerous landscape depressions and freeze-thaw cycles. The aim of this study was to evaluate an eco-hydrological model for nutrient export prediction and assess the impacts of management practices for a cold-climate prairie watershed. To achieve the objectives, a new version of the SWAT model called SWAT-PDLD, which combines SWAT and a Probability Distributed Landscape Depressions (PDLD) model, along with a seasonally varying soil erodibility factor, was applied to a Canadian prairie watershed (the Assiniboine River watershed, Saskatchewan, Canada). The PDLD module is used to simulate the effect of the numerous landscape depressions that exist in these watersheds on streamflow, whereas a seasonally varying soil erodibility factor is used to take into account seasonal variation of sediment and nutrient generation due to the cold climate conditions. Model calibration and uncertainty analysis were performed using the Sequential Uncertainty FItting (SUFI-2). The study shows that the SWAT-PDLD model with seasonally varying soil erodibility simulates the daily nutrient export in a cold prairie watershed satisfactorily as confirmed by both graphical plots and statistical measures. A sensitivity analysis of sub-watershed discretization revealed that the streamflow is relatively insensitive to sub-watershed discretization but it did affect sediment and nutrient export. Importantly, the model shows that both filter strips and cover crops decreased sediment, phosphorous, and nitrogen export, while conservation tillage increased phosphorous export in the study watershed.

Suggested Citation

  • Mekonnen, Balew A. & Mazurek, Kerry A. & Putz, Gordon, 2017. "Modeling of nutrient export and effects of management practices in a cold-climate prairie watershed: Assiniboine River watershed, Canada," Agricultural Water Management, Elsevier, vol. 180(PB), pages 235-251.
  • Handle: RePEc:eee:agiwat:v:180:y:2017:i:pb:p:235-251
    DOI: 10.1016/j.agwat.2016.06.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416302281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.06.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chanasyk, D. S. & Mapfumo, E. & Willms, W., 2003. "Quantification and simulation of surface runoff from fescue grassland watersheds," Agricultural Water Management, Elsevier, vol. 59(2), pages 137-153, March.
    2. G. C. Kooten & W. Hartley Furtan, 1987. "A Review of Issues Pertaining to Soil Deterioration in Canada," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 35(1), pages 33-54, March.
    3. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    4. Van der Valk, Arnold G. & Jolly, Robert W., 1992. "Recommendations for Research to Develop Guidelines for the Use of Wetlands to Control Rural Nonpoint Source Pollution," Staff General Research Papers Archive 11369, Iowa State University, Department of Economics.
    5. G. C. Kooten & Ward P. Weisensel & E. Jong, 1989. "Estimating the Costs of Soil Erosion: A Reply," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 37(3), pages 555-562, November.
    6. G. C. Kooten & Ward P. Weisensel & E. Jong, 1989. "Estimating the Costs of Soil Erosion in Saskatchewan," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 37(1), pages 63-75, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oduor, Brian Omondi & Campo-Bescós, Miguel Ángel & Lana-Renault, Noemí & Kyllmar, Katarina & Mårtensson, Kristina & Casalí, Javier, 2023. "Quantification of agricultural best management practices impacts on sediment and phosphorous export in a small catchment in southeastern Sweden," Agricultural Water Management, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Welderufael, W.A. & Woyessa, Y.E. & Edossa, D.C., 2013. "Impact of rainwater harvesting on water resources of the modder river basin, central region of South Africa," Agricultural Water Management, Elsevier, vol. 116(C), pages 218-227.
    2. Lana Awada & Richard S. Gray & Cecil Nagy, 2016. "The Benefits and Costs of Zero Tillage RD&E on the Canadian Prairies," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(3), pages 417-438, September.
    3. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    4. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    5. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    6. Medwid, Laura J. & Lambert, Dayton M. & Clark, Christopher D. & Hawkins, Shawn A. & McClellan, Hannah A., 2016. "Estimating Soil Loss Abatement Curves with Primary Survey Data and Hydrologic Models: An Empirical Example for Livestock Production in an East Tennessee Watershed," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230052, Southern Agricultural Economics Association.
    7. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    8. Alan F. Hamlet & Nima Ehsani & Jennifer L. Tank & Zachariah Silver & Kyuhyun Byun & Ursula H. Mahl & Shannon L. Speir & Matt T. Trentman & Todd V. Royer, 2024. "Effects of climate and winter cover crops on nutrient loss in agricultural watersheds in the midwestern U.S," Climatic Change, Springer, vol. 177(1), pages 1-21, January.
    9. Negar Tayebzadeh Moghadam & Karim C. Abbaspour & Bahram Malekmohammadi & Mario Schirmer & Ahmad Reza Yavari, 2021. "Spatiotemporal Modelling of Water Balance Components in Response to Climate and Landuse Changes in a Heterogeneous Mountainous Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 793-810, February.
    10. Yates, Andrew J. & Doyle, Martin W. & Rigby, J.R. & Schnier, Kurt E., 2013. "Market power, private information, and the optimal scale of pollution permit markets with application to North Carolina's Neuse River," Resource and Energy Economics, Elsevier, vol. 35(3), pages 256-276.
    11. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    12. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    13. S. K. Aryal & S. Ashbolt & B. S. McIntosh & K. P. Petrone & S. Maheepala & R. K. Chowdhury & T. Gardener & R. Gardiner, 2016. "Assessing and Mitigating the Hydrological Impacts of Urbanisation in Semi-Urban Catchments Using the Storm Water Management Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5437-5454, November.
    14. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    15. Kotchakarn Nantasaksiri & Patcharawat Charoen-Amornkitt & Takashi Machimura, 2021. "Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration," Energies, MDPI, vol. 14(5), pages 1-15, March.
    16. Howard, Gregory E. & Zhang, Wendong & Valcu-Lisman, Adriana M., 2021. "Evaluating the Efficiency-Participation Tradeoff in Agricultural Conservation Programs: The Effect of Reverse Auctions, Spatial Targeting, and Higher Offered Payments," 2021 Annual Meeting, August 1-3, Austin, Texas 313926, Agricultural and Applied Economics Association.
    17. Sanjeet Kumar & Ashok Mishra, 2015. "Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1749-1765, April.
    18. Savé, R. & de Herralde, F. & Aranda, X. & Pla, E. & Pascual, D. & Funes, I. & Biel, C., 2012. "Potential changes in irrigation requirements and phenology of maize, apple trees and alfalfa under global change conditions in Fluvià watershed during XXIst century: Results from a modeling approximat," Agricultural Water Management, Elsevier, vol. 114(C), pages 78-87.
    19. Darren Ficklin & Iris Stewart & Edwin Maurer, 2013. "Effects of projected climate change on the hydrology in the Mono Lake Basin, California," Climatic Change, Springer, vol. 116(1), pages 111-131, January.
    20. Roy Brouwer & Rute Pinto & Jorge Garcia‐Hernandez & Xingtong Li & Merrin Macrae & Predrag Rajsic & Wanhong Yang & Yongbo Liu & Mark Anderson & Louise Heyming, 2023. "Spatial optimization of nutrient reduction measures on agricultural land to improve water quality: A coupled modeling approach," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 71(3-4), pages 329-353, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:180:y:2017:i:pb:p:235-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.