IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v180y2017ipbp224-234.html
   My bibliography  Save this article

Evaluation of executable best management practices in Haean highland agricultural catchment of South Korea using SWAT

Author

Listed:
  • Jang, Sun Sook
  • Ahn, So Ra
  • Kim, Seong Joon

Abstract

This study is to evaluate the reduction of high level nonpoint source (NPS) pollution discharges in Haean highland agricultural catchment (62.8km2) by applying best management practices (BMPs) of vegetation filter strip installation (VFS), fertilizer control (FC), and rice straw mulching (RSM) in uplands above 600m of elevation using SWAT (Soil and Water Assessment Tool). From the modeling results, the VFS BMP showed the best performance to reduce sediment (SS) of 16.0% for 1m strip width up to 34.8% for 5m strip width and total phosphorus (T-P) discharge loads of 5.1% to 21.3% from highland crop areas. The FC BMP showed the discharge loads reduction of 4.9% for 10% fertilizer reduction up to 16.4% for 30% fertilizer reduction. The RSM BMP results showed the sediment reduction of 3.0% for 6.0% runoff reduction up to 14.1% for 17.0% runoff reduction and T-P reduction of 1.3% for 6.0% runoff reduction up to 6.8% for 17.0% runoff reduction by showing negative effect of total nitrogen (T-N) up to −3.7% for 12.0% runoff reduction. However, because of the difficulties to install vegetation filter strip by farmers unwillingness in South Korea, the BMPs combination of fertilizer reduction and rice straw mulching (FC+RSM) was suggested as an executable BMP to obtain positive removal efficiency for all nutrient discharge loads. The FC+RSM BMP showed sediment, T-P, and T-N reductions up to 9.7%, 8.1%, and 9.2% respectively.

Suggested Citation

  • Jang, Sun Sook & Ahn, So Ra & Kim, Seong Joon, 2017. "Evaluation of executable best management practices in Haean highland agricultural catchment of South Korea using SWAT," Agricultural Water Management, Elsevier, vol. 180(PB), pages 224-234.
  • Handle: RePEc:eee:agiwat:v:180:y:2017:i:pb:p:224-234
    DOI: 10.1016/j.agwat.2016.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741630213X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruidisch, Marianne & Kettering, Janine & Arnhold, Sebastian & Huwe, Bernd, 2013. "Modeling water flow in a plastic mulched ridge cultivation system on hillslopes affected by South Korean summer monsoon," Agricultural Water Management, Elsevier, vol. 116(C), pages 204-217.
    2. Parajuli, P.B. & Mankin, K.R. & Barnes, P.L., 2008. "Applicability of targeting vegetative filter strips to abate fecal bacteria and sediment yield using SWAT," Agricultural Water Management, Elsevier, vol. 95(10), pages 1189-1200, October.
    3. Liu, Ruimin & Zhang, Peipei & Wang, Xiujuan & Chen, Yaxin & Shen, Zhenyao, 2013. "Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed," Agricultural Water Management, Elsevier, vol. 117(C), pages 9-18.
    4. Maharjan, Ganga Ram & Ruidisch, Marianne & Shope, Christopher L. & Choi, Kwanghun & Huwe, Bernd & Kim, Seong Joon & Tenhunen, John & Arnhold, Sebastian, 2016. "Assessing the effectiveness of split fertilization and cover crop cultivation in order to conserve soil and water resources and improve crop productivity," Agricultural Water Management, Elsevier, vol. 163(C), pages 305-318.
    5. Dechmi, F. & Skhiri, A., 2013. "Evaluation of best management practices under intensive irrigation using SWAT model," Agricultural Water Management, Elsevier, vol. 123(C), pages 55-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinsun Kim & Baekyung Park & Jiyeon Choi & Minji Park & Jong Mun Lee & Kyunghyun Kim & Yongseok Kim, 2021. "Optimum Detailed Standards to Control Non-Point Source Pollution Priority Management Areas: Centered on Highland Agriculture Watershed," Sustainability, MDPI, vol. 13(17), pages 1-16, September.
    2. Olufemi Abimbola & Aaron Mittelstet & Tiffany Messer & Elaine Berry & Ann van Griensven, 2020. "Modeling and Prioritizing Interventions Using Pollution Hotspots for Reducing Nutrients, Atrazine and E. coli Concentrations in a Watershed," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    3. Kaown, Dugin & Koh, Dong-Chan & Yu, Hakyeong E. & Kim, Heejung & Yoon, Yoon-Yeol & Yum, Byoung-Woo & Lee, Kang-Kun, 2020. "Combined effects of recharge and hydrogeochemical conditions on nitrate in groundwater of a highland agricultural basin based on multiple environmental tracers," Agricultural Water Management, Elsevier, vol. 240(C).
    4. Dipesh Nepal & Prem B. Parajuli, 2022. "Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT," Agriculture, MDPI, vol. 12(4), pages 1-19, April.
    5. Nina Noreika & Tailin Li & Julie Winterova & Josef Krasa & Tomas Dostal, 2022. "The Effects of Agricultural Conservation Practices on the Small Water Cycle: From the Farm- to the Management-Scale," Land, MDPI, vol. 11(5), pages 1-16, May.
    6. Puertes, Cristina & Bautista, Inmaculada & Lidón, Antonio & Francés, Félix, 2021. "Best management practices scenario analysis to reduce agricultural nitrogen loads and sediment yield to the semiarid Mar Menor coastal lagoon (Spain)," Agricultural Systems, Elsevier, vol. 188(C).
    7. Avay Risal & Prem B. Parajuli, 2022. "Evaluation of the Impact of Best Management Practices on Streamflow, Sediment and Nutrient Yield at Field and Watershed Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1093-1105, February.
    8. Ahn, Sora & Abudu, Shalamu & Sheng, Zhuping & Mirchi, Ali, 2018. "Hydrologic impacts of drought-adaptive agricultural water management in a semi-arid river basin: Case of Rincon Valley, New Mexico," Agricultural Water Management, Elsevier, vol. 209(C), pages 206-218.
    9. Sith, Ratino & Watanabe, Atsushi & Nakamura, Takashi & Yamamoto, Takahiro & Nadaoka, Kazuo, 2019. "Assessment of water quality and evaluation of best management practices in a small agricultural watershed adjacent to Coral Reef area in Japan," Agricultural Water Management, Elsevier, vol. 213(C), pages 659-673.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Puertes, Cristina & Bautista, Inmaculada & Lidón, Antonio & Francés, Félix, 2021. "Best management practices scenario analysis to reduce agricultural nitrogen loads and sediment yield to the semiarid Mar Menor coastal lagoon (Spain)," Agricultural Systems, Elsevier, vol. 188(C).
    2. Ricci, G.F. & Jeong, J. & De Girolamo, A.M. & Gentile, F., 2020. "Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed," Land Use Policy, Elsevier, vol. 90(C).
    3. Wallace, Carlington W. & Flanagan, Dennis C. & Engel, Bernard A., 2017. "Quantifying the effects of conservation practice implementation on predicted runoff and chemical losses under climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 51-65.
    4. Asci, Serhat & Borisova, Tatiana & VanSickle, John J., 2015. "Role of economics in developing fertilizer best management practices," Agricultural Water Management, Elsevier, vol. 152(C), pages 251-261.
    5. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Xiaojing Ni & Prem B. Parajuli & Ying Ouyang, 2020. "Assessing Agriculture Conservation Practice Impacts on Groundwater Levels at Watershed Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1553-1566, March.
    7. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    8. Shuo Lei & Lu Zhang & Chunfei Hou & Yongwei Han, 2023. "Internet Use, Subjective Well-Being, and Environmentally Friendly Practices in Rural China: An Empirical Analysis," Sustainability, MDPI, vol. 15(14), pages 1-13, July.
    9. Yingzhuang Guo & Xiaoyan Wang & Lili Zhou & Charles Melching & Zeqi Li, 2020. "Identification of Critical Source Areas of Nitrogen Load in the Miyun Reservoir Watershed under Different Hydrological Conditions," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    10. Zhao, Ying & Zhai, Xiafei & Wang, Zhaohui & Li, Huijie & Jiang, Rui & Lee Hill, Robert & Si, Bing & Hao, Feng, 2018. "Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 202(C), pages 99-112.
    11. Hao Cheng & Chen Lin & Liangjie Wang & Junfeng Xiong & Lingyun Peng & Chenxi Zhu, 2020. "The Influence of Different Forest Characteristics on Non-point Source Pollution: A Case Study at Chaohu Basin, China," IJERPH, MDPI, vol. 17(5), pages 1-19, March.
    12. Zhang, Shanghong & Liu, Yan & Wang, Taiwei, 2014. "How land use change contributes to reducing soil erosion in the Jialing River Basin, China," Agricultural Water Management, Elsevier, vol. 133(C), pages 65-73.
    13. Wei Yan & Xuejun Duan & Jiayu Kang & Zhiyuan Ma, 2023. "Assessing the Impact of Rural Multifunctionality on Non-Point Source Pollution: A Case Study of Typical Hilly Watershed, China," Land, MDPI, vol. 12(10), pages 1-17, October.
    14. Homayounfar, Mehran & Muneepeerakul, Rachata & Martinez, Christopher J., 2023. "Navigating farming-BMP-policy interplay through a dynamical model," Ecological Economics, Elsevier, vol. 205(C).
    15. Ricci, Giovanni Francesco & D’Ambrosio, Ersilia & De Girolamo, Anna Maria & Gentile, Francesco, 2022. "Efficiency and feasibility of Best Management Practices to reduce nutrient loads in an agricultural river basin," Agricultural Water Management, Elsevier, vol. 259(C).
    16. Dai, C. & Cai, Y.P. & Ren, W. & Xie, Y.F. & Guo, H.C., 2016. "Identification of optimal placements of best management practices through an interval-fuzzy possibilistic programming model," Agricultural Water Management, Elsevier, vol. 165(C), pages 108-121.
    17. Ruofan Li & Juanjuan Ma & Xihuan Sun & Xianghong Guo & Lijian Zheng, 2021. "Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns," Agriculture, MDPI, vol. 11(11), pages 1-20, November.
    18. Javier Martínez-Dalmau & Julio Berbel & Rafaela Ordóñez-Fernández, 2021. "Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    19. Her, Younggu & Chaubey, Indrajeet & Frankenberger, Jane & Jeong, Jaehak, 2017. "Implications of spatial and temporal variations in effects of conservation practices on water management strategies," Agricultural Water Management, Elsevier, vol. 180(PB), pages 252-266.
    20. Abi Saab, Marie Therese & Todorovic, Mladen & Albrizio, Rossella, 2015. "Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?," Agricultural Water Management, Elsevier, vol. 147(C), pages 21-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:180:y:2017:i:pb:p:224-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.