IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9842-d627618.html
   My bibliography  Save this article

Optimum Detailed Standards to Control Non-Point Source Pollution Priority Management Areas: Centered on Highland Agriculture Watershed

Author

Listed:
  • Jinsun Kim

    (National Institute of Environmental Research, Incheon 22689, Korea)

  • Baekyung Park

    (National Institute of Environmental Research, Incheon 22689, Korea)

  • Jiyeon Choi

    (National Institute of Environmental Research, Incheon 22689, Korea)

  • Minji Park

    (National Institute of Environmental Research, Incheon 22689, Korea)

  • Jong Mun Lee

    (National Institute of Environmental Research, Incheon 22689, Korea)

  • Kyunghyun Kim

    (National Institute of Environmental Research, Incheon 22689, Korea)

  • Yongseok Kim

    (National Institute of Environmental Research, Incheon 22689, Korea)

Abstract

The Ministry of Environment in Korea aims to reduce non-point source (NPS) pollution and improve soil water management by expanding NPS priority management areas. Six NPS priority management areas to reduce suspended solids (SS) according to soil loss were chosen as they either constitute serious hazards to the natural ecosystem due to NPS pollutants or they are areas with unusual geologic structure or strata. Although more comprehensive standards are required for effective NPS management, however, no detailed consideration factors and standards are available in the legal provisions. Therefore, in this study, based on the existing six priority NPS management areas and using results from previous studies, we present detailed legal designation standards. We found that the higher the altitude, slope, and field area ratio, the higher the effect of SS on water quality during rainfall. Additionally, there is a high correlation as R 2 0.9813 between SS and the habitat and riparian index. These results are useful for establishing detailed standards for areas requiring an NPS management system, future expansion of the NPS priority management area designation, and policymaking and research for reducing NPS pollution in Korea.

Suggested Citation

  • Jinsun Kim & Baekyung Park & Jiyeon Choi & Minji Park & Jong Mun Lee & Kyunghyun Kim & Yongseok Kim, 2021. "Optimum Detailed Standards to Control Non-Point Source Pollution Priority Management Areas: Centered on Highland Agriculture Watershed," Sustainability, MDPI, vol. 13(17), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9842-:d:627618
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jang, Sun Sook & Ahn, So Ra & Kim, Seong Joon, 2017. "Evaluation of executable best management practices in Haean highland agricultural catchment of South Korea using SWAT," Agricultural Water Management, Elsevier, vol. 180(PB), pages 224-234.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Puertes, Cristina & Bautista, Inmaculada & Lidón, Antonio & Francés, Félix, 2021. "Best management practices scenario analysis to reduce agricultural nitrogen loads and sediment yield to the semiarid Mar Menor coastal lagoon (Spain)," Agricultural Systems, Elsevier, vol. 188(C).
    2. Kaown, Dugin & Koh, Dong-Chan & Yu, Hakyeong E. & Kim, Heejung & Yoon, Yoon-Yeol & Yum, Byoung-Woo & Lee, Kang-Kun, 2020. "Combined effects of recharge and hydrogeochemical conditions on nitrate in groundwater of a highland agricultural basin based on multiple environmental tracers," Agricultural Water Management, Elsevier, vol. 240(C).
    3. Sith, Ratino & Watanabe, Atsushi & Nakamura, Takashi & Yamamoto, Takahiro & Nadaoka, Kazuo, 2019. "Assessment of water quality and evaluation of best management practices in a small agricultural watershed adjacent to Coral Reef area in Japan," Agricultural Water Management, Elsevier, vol. 213(C), pages 659-673.
    4. Olufemi Abimbola & Aaron Mittelstet & Tiffany Messer & Elaine Berry & Ann van Griensven, 2020. "Modeling and Prioritizing Interventions Using Pollution Hotspots for Reducing Nutrients, Atrazine and E. coli Concentrations in a Watershed," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    5. Avay Risal & Prem B. Parajuli, 2022. "Evaluation of the Impact of Best Management Practices on Streamflow, Sediment and Nutrient Yield at Field and Watershed Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1093-1105, February.
    6. Dipesh Nepal & Prem B. Parajuli, 2022. "Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT," Agriculture, MDPI, vol. 12(4), pages 1-19, April.
    7. Nina Noreika & Tailin Li & Julie Winterova & Josef Krasa & Tomas Dostal, 2022. "The Effects of Agricultural Conservation Practices on the Small Water Cycle: From the Farm- to the Management-Scale," Land, MDPI, vol. 11(5), pages 1-16, May.
    8. Ahn, Sora & Abudu, Shalamu & Sheng, Zhuping & Mirchi, Ali, 2018. "Hydrologic impacts of drought-adaptive agricultural water management in a semi-arid river basin: Case of Rincon Valley, New Mexico," Agricultural Water Management, Elsevier, vol. 209(C), pages 206-218.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9842-:d:627618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.