IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v116y2013icp204-217.html
   My bibliography  Save this article

Modeling water flow in a plastic mulched ridge cultivation system on hillslopes affected by South Korean summer monsoon

Author

Listed:
  • Ruidisch, Marianne
  • Kettering, Janine
  • Arnhold, Sebastian
  • Huwe, Bernd

Abstract

Intensive agricultural land use in combination with heavy rain storm events during the summer monsoon season plays a key role in groundwater pollution by nutrients and agrochemicals in agricultural catchments in South Korea. A widespread measure for weed control in this region is plastic mulched ridge cultivation. However, it is not well understood, how and to which extent the water flow regime in sloped fields is hereby modified. To evaluate the effect of plastic mulched ridge cultivation (RTpm) on soil water dynamics, we carried out a two-dimensional process-based modeling study using the numerical model Hydrus 2/3D. Subsequently, RTpm was compared to model simulations of ridge cultivation without plastic cover (RT) and flat conventional tillage without ridges and without plastic cover (CT). Datasets of soil water potentials obtained by field measurements at two plastic mulched potato fields (Solanum tuberosum L.) provided the basis for optimizing soil hydraulic parameters inversely by the Levenberg–Marquardt algorithm. We found, that plastic mulching induced horizontal pressure head gradients and forced soil water to move laterally from furrows to ridges under normal weather conditions. During monsoon events, soils were fully saturated and interflow occurred in coarse textured and ploughed topsoil. Further, the water balance of the different model scenarios showed that plastic mulching reduced drainage water up to 16% but concurrently increased the surface runoff up to 65%. The consequences are an increase in runoff peak flow, flood risk and erosion. Therefore, we recommend the application of perforated and biodegradable plastic mulch in regions affected by summer monsoon.

Suggested Citation

  • Ruidisch, Marianne & Kettering, Janine & Arnhold, Sebastian & Huwe, Bernd, 2013. "Modeling water flow in a plastic mulched ridge cultivation system on hillslopes affected by South Korean summer monsoon," Agricultural Water Management, Elsevier, vol. 116(C), pages 204-217.
  • Handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:204-217
    DOI: 10.1016/j.agwat.2012.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412002041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi Wang & Enhe Zhang & Fengmin Li & Fengrui Li, 2008. "Runoff Efficiency and the Technique of Micro-water Harvesting with Ridges and Furrows, for Potato Production in Semi-arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1431-1443, October.
    2. Li, Xiao-Yan & Gong, Jia-Dong, 2002. "Effects of different ridge:furrow ratios and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches," Agricultural Water Management, Elsevier, vol. 54(3), pages 243-254, April.
    3. Dusek, J. & Ray, C. & Alavi, G. & Vogel, T. & Sanda, M., 2010. "Effect of plastic mulch on water flow and herbicide transport in soil cultivated with pineapple crop: A modeling study," Agricultural Water Management, Elsevier, vol. 97(10), pages 1637-1645, October.
    4. Li, X.-Y. & Zhao, W.-W. & Song, Y.-X. & Wang, W. & Zhang, X.-Y., 2008. "Rainfall harvesting on slopes using contour furrows with plastic-covered transverse ridges for growing Caragana korshinskii in the semiarid region of China," Agricultural Water Management, Elsevier, vol. 95(5), pages 539-544, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jang, Sun Sook & Ahn, So Ra & Kim, Seong Joon, 2017. "Evaluation of executable best management practices in Haean highland agricultural catchment of South Korea using SWAT," Agricultural Water Management, Elsevier, vol. 180(PB), pages 224-234.
    2. Ruofan Li & Juanjuan Ma & Xihuan Sun & Xianghong Guo & Lijian Zheng, 2021. "Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns," Agriculture, MDPI, vol. 11(11), pages 1-20, November.
    3. Filipović, Vilim & Romić, Davor & Romić, Marija & Borošić, Josip & Filipović, Lana & Mallmann, Fábio Joel Kochem & Robinson, David A., 2016. "Plastic mulch and nitrogen fertigation in growing vegetables modify soil temperature, water and nitrate dynamics: Experimental results and a modeling study," Agricultural Water Management, Elsevier, vol. 176(C), pages 100-110.
    4. Zhao, Ying & Zhai, Xiafei & Wang, Zhaohui & Li, Huijie & Jiang, Rui & Lee Hill, Robert & Si, Bing & Hao, Feng, 2018. "Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 202(C), pages 99-112.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Li, Weiwei & Xiong, Li & Wang, Changjiang & Liao, Yuncheng & Wu, Wei, 2019. "Optimized ridge–furrow with plastic film mulching system to use precipitation efficiently for winter wheat production in dry semi–humid areas," Agricultural Water Management, Elsevier, vol. 218(C), pages 211-221.
    3. Yildirim, Demet & Cemek, Bilal & Unlukara, Ali, 2022. "The effect of mulched ridge and furrow micro catchment water harvesting on red pepper yield and quality features in Bafra Plain of Northern Turkey," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Zhang, Xudong & Li, Zhimin & Siddique, Kadambot H.M. & Shayakhmetova, Altyn & Jia, Zhikuan & Han, Qingfang, 2020. "Increasing maize production and preventing water deficits in semi-arid areas: A study matching fertilization with regional precipitation under mulch planting," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Yuying Pan & Xuebiao Pan & Tan Zi & Qi Hu & Jing Wang & Guolin Han & Jialin Wang & Zhihua Pan, 2019. "Optimal Ridge–Furrow Ratio for Maximum Drought Resilience of Sunflower in Semi-Arid Region of China," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    6. Bouma, Jetske A. & Hegde, Seema S. & Lasage, Ralph, 2016. "Assessing the returns to water harvesting: A meta-analysis," Agricultural Water Management, Elsevier, vol. 163(C), pages 100-109.
    7. Li-fang Wang & Juan Chen & Zhou-ping Shangguan, 2015. "Yield Responses of Wheat to Mulching Practices in Dryland Farming on the Loess Plateau," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    8. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    9. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    10. Zhang, Guangxin & Dai, Rongcheng & Ma, Wenzhuo & Fan, Hengzhi & Meng, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Optimizing the ridge–furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Lian, Yanhao & Ali, Shahzad & Zhang, Xudong & Wang, Tianlu & Liu, Qi & Jia, Qianmin & Jia, Zhikuan & Han, Qingfang, 2016. "Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas," Agricultural Water Management, Elsevier, vol. 178(C), pages 137-147.
    13. Zhao, Ying & Zhai, Xiafei & Wang, Zhaohui & Li, Huijie & Jiang, Rui & Lee Hill, Robert & Si, Bing & Hao, Feng, 2018. "Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 202(C), pages 99-112.
    14. Chen, Keyuan & Ali, Shahzad & Chen, Yanyun & Manzoor, & Sohail, Amir & Jan, Amanullah & Inamullah, & Fahad, Shah, 2018. "Effect of ridge-covering mulching materials on hormonal changes, antioxidative enzyme activities and production of maize in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 204(C), pages 281-291.
    15. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    16. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    17. Gu, Xiao-Bo & Li, Yuan-Nong & Du, Ya-Dan, 2018. "Effects of ridge-furrow film mulching and nitrogen fertilization on growth, seed yield and water productivity of winter oilseed rape (Brassica napus L.) in Northwestern China," Agricultural Water Management, Elsevier, vol. 200(C), pages 60-70.
    18. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    19. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    20. Wang, Qi & Zhang, Dengkui & Zhou, Xujiao & Mak-Mensah, Erastus & Zhao, Xiaole & Zhao, Wucheng & Wang, Xiaoyun & Stellmach, Dan & Liu, Qinglin & Li, Xiaoling & Li, Guang & Wang, Heling & Zhang, Kai, 2022. "Optimum planting configuration for alfalfa production with ridge-furrow rainwater harvesting in a semiarid region of China," Agricultural Water Management, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:204-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.