IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v177y2016icp410-418.html
   My bibliography  Save this article

Effect of irrigation frequency and water distribution pattern on leaf gas exchange of cv. ‘Syrah’ grown on a clay soil at two levels of water availability

Author

Listed:
  • Sebastian, Bárbara
  • Lissarrague, José R.
  • Santesteban, Luis G.
  • Linares, Rubén
  • Junquera, Pedro
  • Baeza, Pilar

Abstract

The implications of water availability in grapevine physiology have been widely studied before. However, for a given irrigation water amount, the effect of other aspects such as application frequency, or emitter spacing and flow rate (i.e.: distribution pattern) has been scarcely studied, with nearly no previous research on their implications on leaf gas exchange. The aim of this work was to evaluate the physiological response of grapevine to two irrigation frequencies (IrrF, every 2 and 4days) and two water distribution patterns (DisP, 2L h−1 emitters every 0.6m vs. 4L h−1 emitters every 1.2m). The experiment was carried out in a cv. Syrah vineyard with a clay soil in central Spain, and the two factors were evaluated under two water availability conditions (low and medium). IrrF and DisP promoted changes in leaf gas exchange. Under low WA conditions, plants irrigated every 4days had higher average net assimilation than plants irrigated every 2days. Under medium WA conditions leaf gas exchange depended on the day of measurement with respect to irrigation. Water distribution pattern effect was less evident, but plants with closer emitters performed better under medium WA. The results obtained suggest that variations in irrigation frequency and water availability promote plant acclimation to water deficit conditions, more intense as irrigation dose was lower and as irrigation frequency was higher.

Suggested Citation

  • Sebastian, Bárbara & Lissarrague, José R. & Santesteban, Luis G. & Linares, Rubén & Junquera, Pedro & Baeza, Pilar, 2016. "Effect of irrigation frequency and water distribution pattern on leaf gas exchange of cv. ‘Syrah’ grown on a clay soil at two levels of water availability," Agricultural Water Management, Elsevier, vol. 177(C), pages 410-418.
  • Handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:410-418
    DOI: 10.1016/j.agwat.2016.08.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416303249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.08.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acevedo-Opazo, C. & Ortega-Farias, S. & Fuentes, S., 2010. "Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 97(7), pages 956-964, July.
    2. Sebastian, Bárbara & Baeza, Pilar & Santesteban, Luis G. & Sanchez de Miguel, Patricia & De La Fuente, Mario & Lissarrague, José R., 2015. "Response of grapevine cv. Syrah to irrigation frequency and water distribution pattern in a clay soil," Agricultural Water Management, Elsevier, vol. 148(C), pages 269-279.
    3. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping, 2006. "Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain," Agricultural Water Management, Elsevier, vol. 79(3), pages 248-264, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Qing & Wang, Yaosheng & Chen, Geng & Yang, Hui & Du, Taisheng, 2018. "Water use efficiency was improved at leaf and yield levels of tomato plants by continuous irrigation using semipermeable membrane," Agricultural Water Management, Elsevier, vol. 203(C), pages 430-437.
    2. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Fang, Qin & Zhang, Xiying & Shao, Liwei & Chen, Suying & Sun, Hongyong, 2018. "Assessing the performance of different irrigation systems on winter wheat under limited water supply," Agricultural Water Management, Elsevier, vol. 196(C), pages 133-143.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Montoro, A. & Mañas, F. & López-Urrea, R., 2016. "Transpiration and evaporation of grapevine, two components related to irrigation strategy," Agricultural Water Management, Elsevier, vol. 177(C), pages 193-200.
    3. Han, Weihua & Sun, Jiaxing & Zhang, Kui & Mao, Lili & Gao, Lili & Hou, Xuemin & Cui, Ningbo & Kang, Wenhuai & Gong, Daozhi, 2023. "Optimizing drip fertigation management based on yield, quality, water and fertilizer use efficiency of wine grape in North China," Agricultural Water Management, Elsevier, vol. 280(C).
    4. Çolak, Yeşim Bozkurt & Yazar, Attila & Gönen, Engin & Eroğlu, E. Çağlar, 2018. "Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns," Agricultural Water Management, Elsevier, vol. 206(C), pages 165-175.
    5. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    6. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
    7. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    8. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    9. Alejandra Engler & Roberto Jara-Rojas & Carlos Bopp, 2016. "Efficient use of Water Resources in Vineyards: A Recursive joint Estimation for the Adoption of Irrigation Technology and Scheduling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5369-5383, November.
    10. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    11. Zhou, Zhenjiang & Plauborg, Finn & Parsons, David & Andersen, Mathias Neumann, 2018. "Potato canopy growth, yield and soil water dynamics under different irrigation systems," Agricultural Water Management, Elsevier, vol. 202(C), pages 9-18.
    12. Zarrouk, Olfa & Francisco, Rita & Pinto-Marijuan, Marta & Brossa, Ricard & Santos, Raquen Raissa & Pinheiro, Carla & Costa, Joaquim Miguel & Lopes, Carlos & Chaves, Maria Manuela, 2012. "Impact of irrigation regime on berry development and flavonoids composition in Aragonez (Syn. Tempranillo) grapevine," Agricultural Water Management, Elsevier, vol. 114(C), pages 18-29.
    13. Ma, Xiaochi & Han, Feng & Wu, Jinggui & Ma, Yan & Jacoby, Pete W., 2023. "Optimizing crop water productivity and altering root distribution of Chardonnay grapevine (Vitis vinifera L.) in a silt loam soil through direct root-zone deficit irrigation," Agricultural Water Management, Elsevier, vol. 277(C).
    14. Cheng, Minghui & Wang, Haidong & Zhang, Fucang & Wang, Xiukang & Liao, Zhenqi & Zhang, Shaohui & Yang, Qiliang & Fan, Junliang, 2023. "Effects of irrigation and fertilization regimes on tuber yield, water-nutrient uptake and productivity of potato under drip fertigation in sandy regions of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    15. Petruzzellis, Francesco & Natale, Sara & Bariviera, Luca & Calderan, Alberto & Mihelčič, Alenka & Reščič, Jan & Sivilotti, Paolo & Šuklje, Katja & Lisjak, Klemen & Vanzo, Andreja & Nardini, Andrea, 2022. "High spatial heterogeneity of water stress levels in Refošk grapevines cultivated in Classical Karst," Agricultural Water Management, Elsevier, vol. 260(C).
    16. Chen, Rui & Chang, Hongda & Wang, Zhenhua & Lin, Haixia, 2023. "Determining organic-inorganic fertilizer application threshold to maximize the yield and quality of drip-irrigated grapes in an extremely arid area of Xinjiang, China," Agricultural Water Management, Elsevier, vol. 276(C).
    17. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    18. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    19. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).
    20. Waqas, Muhammad Sohail & Cheema, Muhammad Jehanzeb Masud & Hussain, Saddam & Ullah, Muhammad Kaleem & Iqbal, Muhammad Mazhar, 2021. "Delayed irrigation: An approach to enhance crop water productivity and to investigate its effects on potato yield and growth parameters," Agricultural Water Management, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:410-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.