IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v177y2016icp172-180.html
   My bibliography  Save this article

Combining sap flow measurements and modelling to assess water needs in an oasis farmland shelterbelt of Populus simonii Carr in Northwest China

Author

Listed:
  • Fu, Shuai
  • Sun, Lin
  • Luo, Yi

Abstract

Farmland shelterbelts provide an ecological protection screen for an oasis but exhibit high mortality in the face of water shortage. It is necessary to understand farmland shelterbelt tree transpiration under different levels of water stress and stand ages for proper management. Sap flux measurement techniques and models are among the most useful method to detect water stress and to evaluate plant water consumption. The usefulness of both methods decreases, however, when applied to species, such as Populus simonii Carr, that have an outstanding tolerance to drought and a remarkable capacity to take up water from drying soils. Our hypothesis is that analysis using simultaneous measurements of sap flow and models in the same trees is useful for assessing the irrigation needs in farmland shelterbelts. To test our hypothesis, we analysed the relationships between canopy transpiration, canopy conductance, relative extractable water and atmospheric factors in a farmland shelterbelt and evaluated the effectiveness of the model. Measurements were made during one growing season. The time courses of sap flow measured and modelled on days of contrasting weather and soil water conditions were analysed to evaluate the usefulness of the method to assess the crop water needs. We calculated the daily tree water consumption from sap flow measurements and the parameterized modified Jarvis-Stewart model, and we evaluated the model’s usefulness to assess the final water needs under water stress and stand ages for farmland shelterbelt irrigation. The transpiration decreased as the soil drought increased, and it increased as the atmospheric drought increased. The time course of the water needs showed that the occurrence of water stress in the farmland shelterbelt trees had a large impact on their water consumption, which increased as the water stress decreased, following the equation y=1/[1+e−60.67×(REWx−0.402)]. The simultaneous use of modelling and tree structural data increased the reliability of assessing water needs from youth to maturity. A similar analysis with the water consumption values, from which stand age values were derived, showed that water needs increased with the tree age following the equation y=847−844/[1+(x/87.9)1.9]. We conclude that compared to the use of sap flow records alone, the simultaneous use of sap flow records and model values provides more detailed information to assess water needs in a farmland shelterbelt, which has an important significance for farmland shelterbelt protection.

Suggested Citation

  • Fu, Shuai & Sun, Lin & Luo, Yi, 2016. "Combining sap flow measurements and modelling to assess water needs in an oasis farmland shelterbelt of Populus simonii Carr in Northwest China," Agricultural Water Management, Elsevier, vol. 177(C), pages 172-180.
  • Handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:172-180
    DOI: 10.1016/j.agwat.2016.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741630261X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William R. L. Anderegg & Jeffrey M. Kane & Leander D. L. Anderegg, 2013. "Consequences of widespread tree mortality triggered by drought and temperature stress," Nature Climate Change, Nature, vol. 3(1), pages 30-36, January.
    2. Xiaobin Dong & Yufang Zhang & Weijia Cui & Bin Xun & Baohua Yu & Sergio Ulgiati & Xinshi Zhang, 2011. "Emergy-Based Adjustment of the Agricultural Structure in a Low-Carbon Economy in Manas County of China," Energies, MDPI, vol. 4(9), pages 1-15, September.
    3. Kang, Yaohu & Wang, Ruoshui & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Liu, Shiping, 2012. "Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China," Agricultural Water Management, Elsevier, vol. 109(C), pages 117-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zihe, Liu & Guodong, Jia & Xinxiao, Yu & Weiwei, Lu & Libo, Sun & Yusong, Wang & Baheti, Zierdie, 2021. "Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region," Agricultural Water Management, Elsevier, vol. 253(C).
    2. Xue, Bing & Jiang, Yan & Wang, Qijie & Ma, Bin & Hou, Zhen’an & Liang, Xue & Cui, Yirui & Li, Fangfang, 2024. "Seasonal transpiration dynamics and water use strategy of a farmland shelterbelt in Gurbantunggut Desert oasis, northwestern China," Agricultural Water Management, Elsevier, vol. 295(C).
    3. Venturin, Afonso Zucolotto & Guimarães, Claudinei Martins & Sousa, Elias Fernandes de & Machado Filho, José Altino & Rodrigues, Weverton Pereira & Serrazine, Ícaro de Araujo & Bressan-Smith, Ricardo &, 2020. "Using a crop water stress index based on a sap flow method to estimate water status in conilon coffee plants," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Xing, Liwen & Zhao, Lu & Cui, Ningbo & Liu, Chunwei & Guo, Li & Du, Taisheng & Wu, Zongjun & Gong, Daozhi & Jiang, Shouzheng, 2023. "Apple tree transpiration estimated using the Penman-Monteith model integrated with optimized jarvis model," Agricultural Water Management, Elsevier, vol. 276(C).
    5. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Wu, Lifeng & Zou, Yufeng & Zhuang, Qianlai, 2021. "Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 249(C).
    6. Tianjiao, Feng & Dong, Wang & Ruoshui, Wang & Yixin, Wang & Zhiming, Xin & Fengmin, Luo & Yuan, Ma & Xing, Li & Huijie, Xiao & Caballero-Calvo, Andrés & Rodrigo-Comino, Jesús, 2022. "Spatial-temporal heterogeneity of environmental factors and ecosystem functions in farmland shelterbelt systems in desert oasis ecotones," Agricultural Water Management, Elsevier, vol. 271(C).
    7. Xue, Bing & Jiang, Yan & Wang, Qijie & Ma, Bin & Liang, Xue & Hou, Zhen’an & Li, Fangfang & Cui, Yirui, 2023. "Quantification of the water exchange in an agroforestry system under the background of film-mulching drip irrigation of farmland," Agricultural Water Management, Elsevier, vol. 290(C).
    8. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Guo, Li & Zhao, Long & Wu, Zongjun & Jiang, Xuelian & Wen, Shenglin & Zhao, Lu & Gong, Daozhi, 2024. "Estimating daily kiwifruit evapotranspiration under regulated deficit irrigation strategy using optimized surface resistance based model," Agricultural Water Management, Elsevier, vol. 295(C).
    9. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Leblois, 2021. "Mitigating the impact of bad rainy seasons in poor agricultural regions to tackle deforestation," Post-Print hal-03111007, HAL.
    2. Yan Cheng & Stefan Oehmcke & Martin Brandt & Lisa Rosenthal & Adrian Das & Anton Vrieling & Sassan Saatchi & Fabien Wagner & Maurice Mugabowindekwe & Wim Verbruggen & Claus Beier & Stéphanie Horion, 2024. "Scattered tree death contributes to substantial forest loss in California," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Wenzhi Wang & Xiaohong Liu & Xuemei Shao & Dahe Qin & Guobao Xu & Bo Wang & Xiaomin Zeng & Guoju Wu & Xuanwen Zhang, 2015. "Differential response of Qilian juniper radial growth to climate variations in the middle of Qilian Mountains and the northeastern Qaidam Basin," Climatic Change, Springer, vol. 133(2), pages 237-251, November.
    4. Fan, Yubing & McCann, Laura M., 2017. "Farmers’ Adoption of Pressure Irrigation Systems and Scientific Scheduling Practices: An Application of Multilevel Models," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258458, Agricultural and Applied Economics Association.
    5. Li, Dan & Wan, Shuqin & Li, Xiaobin & Kang, Yaohu & Han, Xiaoyu, 2022. "Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region," Agricultural Water Management, Elsevier, vol. 261(C).
    6. Papastylianou, Panayiota T. & Argyrokastritis, Ioannis G., 2014. "Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 142(C), pages 127-134.
    7. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    8. Eleni Tsaliki & Romain Loison & Apostolos Kalivas & Ioannis Panoras & Ioannis Grigoriadis & Abdou Traore & Jean-Paul Gourlot, 2023. "Cotton Cultivation in Greece under Sustainable Utilization of Inputs," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    9. Zheng, Zhonghua & Zhao, Lei & Oleson, Keith W., 2020. "Large model parameter and structural uncertainties in global projections of urban heat waves," Earth Arxiv f5pwa, Center for Open Science.
    10. Rada Matić & Srđan Stamenković & Zorica Popović & Milena Stefanović & Vera Vidaković & Miroslava Smiljanić & Srđan Bojović, 2015. "Tree responses, tolerance and acclimation to stress: Does current research depend on the cultivation status of studied species?," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1209-1222, November.
    11. Liu, Bingcai & Sohngen, Brent, 2020. "Modeling and predicting forest movement: An analysis of timber market and climate change," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304335, Agricultural and Applied Economics Association.
    12. Ménard, Isabelle & Thiffault, Evelyne & Boulanger, Yan & Boucher, Jean-François, 2022. "Multi-model approach to integrate climate change impact on carbon sequestration potential of afforestation scenarios in Quebec, Canada," Ecological Modelling, Elsevier, vol. 473(C).
    13. Mohammad Hasan Mahmoudi & Mohammad Reza Najafi & Harsimrenjit Singh & Markus Schnorbus, 2021. "Spatial and temporal changes in climate extremes over northwestern North America: the influence of internal climate variability and external forcing," Climatic Change, Springer, vol. 165(1), pages 1-19, March.
    14. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    15. Li, Xiaobin & Kang, Yaohu, 2020. "Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation," Agricultural Water Management, Elsevier, vol. 231(C).
    16. Shareef, Muhammad & Gui, Dongwei & Zeng, Fanjiang & Waqas, Muhammad & Zhang, Bo & Iqbal, Hassan, 2018. "Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China," Agricultural Water Management, Elsevier, vol. 206(C), pages 1-10.
    17. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    18. Kai Xu & Jiaogen Zhou & Qiuliang Lei & Wenbiao Wu & Guangxiong Mao, 2023. "Effect of Agricultural Structure Adjustment on Spatio-Temporal Patterns of Net Anthropogenic Nitrogen Inputs in the Pearl River Basin from 1990 to 2019," Land, MDPI, vol. 12(2), pages 1-18, January.
    19. Wang, Lichun & Ning, Songrui & Chen, Xiaoli & Li, Youli & Guo, Wenzhong & Ben-Gal, Alon, 2021. "Modeling tomato root water uptake influenced by soil salinity under drip irrigation with an inverse method," Agricultural Water Management, Elsevier, vol. 255(C).
    20. Júlio Miguel Alvarenga & Cecília Rodrigues Vieira & Leandro Braga Godinho & Pedro Henrique Campelo & James Purser Pitts & Guarino Rinaldi Colli, 2017. "Spatial-temporal dynamics of neotropical velvet ant (Hymenoptera: Mutillidae) communities along a forest-savanna gradient," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:172-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.