IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v177y2016icp146-164.html
   My bibliography  Save this article

Framework to parameterize and validate APEX to support deployment of the nutrient tracking tool

Author

Listed:
  • Moriasi, Daniel N.
  • King, Kevin W.
  • Bosch, David D.
  • Bjorneberg, Dave L.
  • Teet, Stephen
  • Guzman, Jorge A.
  • Williams, Mark R.

Abstract

The Agricultural Policy Environmental eXtender (APEX) model is the scientific basis for the Nutrient Tracking Tool (NTT). NTT is an enhanced version of the Nitrogen Trading Tool, a user-friendly web-based computer program originally developed by the USDA. NTT was developed to estimate reductions in nutrient losses to the environment associated with alternative practices. The relatively easy access and ease with which the interface can be used has provided opportunities to demonstrate NTT in locations throughout the country; however, the absence of a clearly defined, consistent approach to parameterization and validation has raised questions over the reliability and consistency of simulated results. In this study: guidelines for parameterization and validation of APEX were developed based on literature review findings and the authors’ experience; and a case study was provided to illustrate how the developed guidelines are applied. The developed guidelines are in the form of recommendations covering essential phases of model simulation studies as well as a clear interpretation of model performance evaluation criteria thresholds and model simulation performance results. These guidelines were successfully applied in the central Ohio case study. The most sensitive water yield parameters and their respective reasonable range of values were determined. Simulated monthly and annual water yield values were within 5% and 15% of observed values during the calibration and validation periods, respectively. Overall, the developed guidelines together with the illustrative case study example are intended to serve as the framework to parameterize and validate APEX to support nation-wide deployment of NTT. This framework can be easily modified and used in additional APEX and other modeling studies.

Suggested Citation

  • Moriasi, Daniel N. & King, Kevin W. & Bosch, David D. & Bjorneberg, Dave L. & Teet, Stephen & Guzman, Jorge A. & Williams, Mark R., 2016. "Framework to parameterize and validate APEX to support deployment of the nutrient tracking tool," Agricultural Water Management, Elsevier, vol. 177(C), pages 146-164.
  • Handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:146-164
    DOI: 10.1016/j.agwat.2016.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416302554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kiniry, James R. & Williams, J. R. & Gassman, Philip W. & Debacke, P., 1992. "General, Process-Oriented Model for Two Competing Plant Species (A)," Staff General Research Papers Archive 483, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadesse, Haile K. & Moriasi, Daniel N. & Gowda, Prasanna H. & Marek, Gary & Steiner, Jean L. & Brauer, David & Talebizadeh, Mansour & Nelson, Amanda & Starks, Patrick, 2018. "Evaluating evapotranspiration estimation methods in APEX model for dryland cropping systems in a semi-arid region," Agricultural Water Management, Elsevier, vol. 206(C), pages 217-228.
    2. Luo, Yao & Wang, Hongya, 2019. "Modeling the impacts of agricultural management strategies on crop yields and sediment yields using APEX in Guizhou Plateau, southwest China," Agricultural Water Management, Elsevier, vol. 216(C), pages 325-338.
    3. Amanda M. Nelson & Nicolas E. Quintana Ashwell & Christopher D. Delhom & Drew M. Gholson, 2022. "Leveraging Big Data to Preserve the Mississippi River Valley Alluvial Aquifer: A Blueprint for the National Center for Alluvial Aquifer Research," Land, MDPI, vol. 11(11), pages 1-17, October.
    4. Tewodros Assefa & Manoj Jha & Manuel Reyes & Abeyou W. Worqlul, 2018. "Modeling the Impacts of Conservation Agriculture with a Drip Irrigation System on the Hydrology and Water Management in Sub-Saharan Africa," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    5. Timlin, Dennis & Chun, Jong Ahn & Meisinger, John & Kang, Kwangmin & Fleisher, David & Staver, Ken & Doherty, Craig & Russ, Andrew, 2019. "Evaluation of the agricultural policy environmental extender (APEX) for the Chesapeake Bay watershed," Agricultural Water Management, Elsevier, vol. 221(C), pages 477-485.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garcia y Garcia, Axel & Guerra, Larry C. & Hoogenboom, Gerrit, 2008. "Impact of generated solar radiation on simulated crop growth and yield," Ecological Modelling, Elsevier, vol. 210(3), pages 312-326.
    2. Xie, Yun & Kiniry, James R. & Williams, Jimmy R., 2003. "The ALMANAC model's sensitivity to input variables," Agricultural Systems, Elsevier, vol. 78(1), pages 1-16, October.
    3. Čerkasova, Natalja & White, Michael & Arnold, Jeffrey & Bieger, Katrin & Allen, Peter & Gao, Jungang & Gambone, Marilyn & Meki, Manyowa & Kiniry, James & Gassman, Philip W., 2023. "Field scale SWAT+ modeling of corn and soybean yields for the contiguous United States: National Agroecosystem Model Development," Agricultural Systems, Elsevier, vol. 210(C).
    4. Kiniry, James R. & Bean, Brent & Xie, Yun & Chen, Pei-yu, 2004. "Maize yield potential: critical processes and simulation modeling in a high-yielding environment," Agricultural Systems, Elsevier, vol. 82(1), pages 45-56, October.
    5. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    6. Talebizadeh, Mansour & Moriasi, Daniel & Gowda, Prasanna & Steiner, Jean L. & Tadesse, Haile K. & Nelson, Amanda M. & Starks, Patrick, 2018. "Simultaneous calibration of evapotranspiration and crop yield in agronomic system modeling using the APEX model," Agricultural Water Management, Elsevier, vol. 208(C), pages 299-306.
    7. Ascough II, J.C. & Andales, A.A. & Sherrod, L.A. & McMaster, G.S. & Hansen, N.C. & DeJonge, K.C. & Fathelrahman, E.M. & Ahuja, L.R. & Peterson, G.A. & Hoag, D.L., 2010. "Simulating landscape catena effects in no-till dryland agroecosystems using GPFARM," Agricultural Systems, Elsevier, vol. 103(8), pages 569-584, October.
    8. Napoli, Marco & Orlandini, Simone, 2015. "Evaluating the Arc-SWAT2009 in predicting runoff, sediment, and nutrient yields from a vineyard and an olive orchard in Central Italy," Agricultural Water Management, Elsevier, vol. 153(C), pages 51-62.
    9. Żyromski, Andrzej & Szulczewski, Wiesław & Biniak-Pieróg, Małgorzata & Jakubowski, Wojciech, 2016. "The estimation of basket willow (Salix viminalis) yield – New approach. Part I: Background and statistical description," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1118-1126.
    10. Mabhaudhi, Tafadzwanashe & Dirwai, Tinashe Lindel & Taguta, Cuthbert & Sikka, Alok & Lautze, Jonathan, 2023. "Mapping Decision Support Tools (DSTs) on agricultural water productivity: A global systematic scoping review," Agricultural Water Management, Elsevier, vol. 290(C).
    11. Colas, Floriane & Gauchi, Jean-Pierre & Villerd, Jean & Colbach, Nathalie, 2021. "Simplifying a complex computer model: Sensitivity analysis and metamodelling of an 3D individual-based crop-weed canopy model," Ecological Modelling, Elsevier, vol. 454(C).
    12. Larson, James A. & English, Burton C. & He, Lixia, 2008. "Risk and Return for Bioenergy Crops under Alternative Contracting Arrangements," 2008 Annual Meeting, February 2-6, 2008, Dallas, Texas 6842, Southern Agricultural Economics Association.
    13. Zand-Parsa, Sh. & Sepaskhah, A.R. & Ronaghi, A., 2006. "Development and evaluation of integrated water and nitrogen model for maize," Agricultural Water Management, Elsevier, vol. 81(3), pages 227-256, March.
    14. Alma Delia Baez-Gonzalez & James R. Kiniry & Manyowa N. Meki & Jimmy Williams & Marcelino Alvarez-Cilva & Jose L. Ramos-Gonzalez & Agustin Magallanes-Estala & Gonzalo Zapata-Buenfil, 2017. "Crop Parameters for Modeling Sugarcane under Rainfed Conditions in Mexico," Sustainability, MDPI, vol. 9(8), pages 1-19, July.
    15. Mahbod, Mehdi & Zand-Parsa, Shahrokh & Sepaskhah, Ali Reza, 2015. "Modification of maize simulation model for predicting growth and yield of winter wheat under different applied water and nitrogen," Agricultural Water Management, Elsevier, vol. 150(C), pages 18-34.
    16. Dzotsi, K.A. & Basso, B. & Jones, J.W., 2013. "Development, uncertainty and sensitivity analysis of the simple SALUS crop model in DSSAT," Ecological Modelling, Elsevier, vol. 260(C), pages 62-76.
    17. Jakubowski, Wojciech & Szulczewski, Wiesław & Żyromski, Andrzej & Biniak-Pieróg, Małgorzata, 2016. "The estimation of basket willow (Salix viminalis) yield – New approach, Part II: Theoretical model and its practical application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 843-851.
    18. Dzotsi, K.A. & Basso, B. & Jones, J.W., 2015. "Parameter and uncertainty estimation for maize, peanut and cotton using the SALUS crop model," Agricultural Systems, Elsevier, vol. 135(C), pages 31-47.
    19. Sumin Kim & James R. Kiniry & Amber S. Williams & Norman Meki & Lewis Gaston & Melinda Brakie & Alan Shadow & Felix B. Fritschi & Yanqi Wu, 2017. "Adaptation of C 4 Bioenergy Crop Species to Various Environments within the Southern Great Plains of USA," Sustainability, MDPI, vol. 9(1), pages 1-17, January.
    20. Munier-Jolain, N.M. & Guyot, S.H.M. & Colbach, N., 2013. "A 3D model for light interception in heterogeneous crop:weed canopies: Model structure and evaluation," Ecological Modelling, Elsevier, vol. 250(C), pages 101-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:146-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.