IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v160y2015icp57-63.html
   My bibliography  Save this article

Surfactant effect on forage yield and water use efficiency for berseem clover and basil in intercropping and limited irrigation treatments

Author

Listed:
  • Daneshnia, F.
  • Amini, A.
  • Chaichi, M.R.

Abstract

Quantifying crop response to irrigation is important for establishing effective irrigation management strategies. The present study was conducted to evaluate the response of berseem clover and basil to limited irrigation in an additive intercropping system using a surfactant. The experimental treatments were carried out in split–split plots based on a completely randomized block design with three replications. The limited irrigation treatments comprised of replenishment of I100 full irrigation, I75=25% limited and I50=50% limited weekly evaporation and plant water requirements which were assigned to the main plots. The planting systems of sole berseem clover and sole basil culture along with additive inter cropping of berseem clover+50% basil were assigned to the subplots. Water treatments of control (water alone) and water+surfactant were assigned to the sub-subplots. Results show that severely limited irrigation (I50) dramatically reduced the forage yield of berseem clover and basil by 19.5% compared with the control (I100). The severity of the adverse effects of limited irrigation stress decreased by the surfactant application in irrigation by water+surfactant (9.5% decrement compared to full irrigation). The highest irrigation water use efficiency (2.7kgm−3) was achieved in I50 treatment with an added surfactant. The highest total dry matter yield (berseem clover+basil dry matter) (9257.9kgha−1) was obtained from additive intercropping of berseem clover 100%+basil 50% while irrigated by water+surfactant.

Suggested Citation

  • Daneshnia, F. & Amini, A. & Chaichi, M.R., 2015. "Surfactant effect on forage yield and water use efficiency for berseem clover and basil in intercropping and limited irrigation treatments," Agricultural Water Management, Elsevier, vol. 160(C), pages 57-63.
  • Handle: RePEc:eee:agiwat:v:160:y:2015:i:c:p:57-63
    DOI: 10.1016/j.agwat.2015.06.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741530041X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.06.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    2. Bekele, Samson & Tilahun, Ketema, 2007. "Regulated deficit irrigation scheduling of onion in a semiarid region of Ethiopia," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 148-152, April.
    3. Jahanzad, E. & Jorat, M. & Moghadam, H. & Sadeghpour, A. & Chaichi, M.-R. & Dashtaki, M., 2013. "Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density," Agricultural Water Management, Elsevier, vol. 117(C), pages 62-69.
    4. WANG, Liming, 2014. "Composite Simulation of Dynamic Water Content and Water Use Efficiency of Winter Wheat," Asian Agricultural Research, USA-China Science and Culture Media Corporation, vol. 6(04), pages 1-6, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daneshnia, F. & Amini, A. & Chaichi, M.R., 2016. "Berseem clover quality and basil essential oil yield in intercropping system under limited irrigation treatments with surfactant," Agricultural Water Management, Elsevier, vol. 164(P2), pages 331-339.
    2. F Daneshnia & MR Chaichi, 2018. "Field Treatment Effects on Seed Germination and Early Growth Traits of Berseem Clover under Salinity Stress Conditions," Current Investigations in Agriculture and Current Research, Lupine Publishers, LLC, vol. 2(1), pages 142-155, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madan K. Jha & Richard C. Peralta & Sasmita Sahoo, 2020. "Simulation-Optimization for Conjunctive Water Resources Management and Optimal Crop Planning in Kushabhadra-Bhargavi River Delta of Eastern India," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    2. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    3. Wakeyo, Mekonnen B. & Gardebroek, Cornelis, 2013. "Does water harvesting induce fertilizer use among smallholders? Evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 114(C), pages 54-63.
    4. López-Mata, E. & Tarjuelo, J.M. & Orengo-Valverde, J.J. & Pardo, J.J. & Domínguez, A., 2019. "Irrigation scheduling to maximize crop gross margin under limited water availability," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Kamran, Muhammad & Yan, Zhengang & Chang, Shenghua & Ning, Jiao & Lou, Shanning & Ahmad, Irshad & Ghani, Muhammad Usman & Arif, Muhammad & El Sabagh, Ayman & Hou, Fujiang, 2023. "Interactive effects of reduced irrigation and nitrogen fertilization on resource use efficiency, forage nutritive quality, yield, and economic benefits of spring wheat in the arid region of Northwest ," Agricultural Water Management, Elsevier, vol. 275(C).
    6. Li, Zhou & Zhang, Qingping & Wei, Wanrong & Cui, Song & Tang, Wei & Li, Yuan, 2020. "Determining effects of water and nitrogen inputs on wheat yield and water productivity and nitrogen use efficiency in China: A quantitative synthesis," Agricultural Water Management, Elsevier, vol. 242(C).
    7. Kigalu, Julius M. & Kimambo, Ernest I. & Msite, Isaac & Gembe, Miraj, 2008. "Drip irrigation of tea (Camellia sinensis L.): 1. Yield and crop water productivity responses to irrigation," Agricultural Water Management, Elsevier, vol. 95(11), pages 1253-1260, November.
    8. Wu, Xun & Zhang, Wenjing & Liu, Wen & Zuo, Qiang & Shi, Jianchu & Yan, Xudong & Zhang, Hongfei & Xue, Xuzhang & Wang, Lichun & Zhang, Mo & Ben-Gal, Alon, 2017. "Root-weighted soil water status for plant water deficit index based irrigation scheduling," Agricultural Water Management, Elsevier, vol. 189(C), pages 137-147.
    9. Assefa, Shibeshi & Biazin, Birhanu & Muluneh, Alemayehu & Yimer, Fantaw & Haileslassie, Amare, 2016. "Rainwater harvesting for supplemental irrigation of onions in the southern dry lands of Ethiopia," Agricultural Water Management, Elsevier, vol. 178(C), pages 325-334.
    10. Mwangi Joseph Kanyua, 2020. "Effect of Imposed Self-Governance on Irrigation Rules Design among Horticultural Producers in Peri-Urban Kenya," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    11. Igbadun, Henry E. & Ramalan, A.A. & Oiganji, Ezekiel, 2012. "Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in Samaru, Nigeria," Agricultural Water Management, Elsevier, vol. 109(C), pages 162-169.
    12. Domínguez, A. & Tarjuelo, J.M. & de Juan, J.A. & López-Mata, E. & Breidy, J. & Karam, F., 2011. "Deficit irrigation under water stress and salinity conditions: The MOPECO-Salt Model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1451-1461, July.
    13. Mehrabi, Fatemeh & Sepaskhah, Ali Reza, 2019. "Partial root zone drying irrigation, planting methods and nitrogen fertilization influence on physiologic and agronomic parameters of winter wheat," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    14. Niu, G. & Li, Y.P. & Huang, G.H. & Liu, J. & Fan, Y.R., 2016. "Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 166(C), pages 53-69.
    15. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    16. Li, Mo & Guo, Ping, 2015. "A coupled random fuzzy two-stage programming model for crop area optimization—A case study of the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 155(C), pages 53-66.
    17. Cervantes-Gaxiola, Maritza E. & Sosa-Niebla, Erik F. & Hernández-Calderón, Oscar M. & Ponce-Ortega, José M. & Ortiz-del-Castillo, Jesús R. & Rubio-Castro, Eusiel, 2020. "Optimal crop allocation including market trends and water availability," European Journal of Operational Research, Elsevier, vol. 285(2), pages 728-739.
    18. Martínez-Romero, A. & Martínez-Navarro, A. & Pardo, J.J. & Montoya, F. & Domínguez, A., 2017. "Real farm management depending on the available volume of irrigation water (part II): Analysis of crop parameters and harvest quality," Agricultural Water Management, Elsevier, vol. 192(C), pages 58-70.
    19. Jin Kathrine Fosli & A. Amarender Reddy & Radhika Rani, 2021. "The Policy of Free Electricity to Agriculture Sector: Implications and Perspectives of the Stakeholders in India," Journal of Development Policy and Practice, , vol. 6(2), pages 252-269, July.
    20. Chongfeng Ren & Hongbo Zhang, 2019. "An Inexact Optimization Model for Crop Area Under Multiple Uncertainties," IJERPH, MDPI, vol. 16(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:160:y:2015:i:c:p:57-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.