IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v273y2022ics0378377422004115.html
   My bibliography  Save this article

Surface soil water content as an indicator of Hass avocado irrigation scheduling

Author

Listed:
  • Erazo-Mesa, Edwin
  • Gómez, Edgar Hincapié
  • Sánchez, Andrés Echeverri

Abstract

This study aims to determine whether Hass avocado irrigation can be triggered based on the surface soil water content (SSWC). To address this question, the soil water dynamics from three Hass avocado orchard plots located in Valle del Cauca (Colombia) was simulated using a model provided by Hydrus-1D software, which was calibrated through the genetic algorithm NSGA-II and validated using the soil matric potential measured at several depths at nine monitoring stations installed in the three plots. The influence of each superficial (0–5, 5–10, and 10–15 cm) and deeper (15–30 and 30–60 cm) available water (AW) computed from the simulated moisture on the SWB at 0–60 cm was estimated from the artificial neural network (ANN) trained weights. The most influential depth range was used to predict the soil water balance at 0–60 cm using ANN. For validation, the RMSE slightly increased regarding calibration, varying from 1.73 to 8.20, while the R2 value varied from 0.61 to 0.89 (P < 0.001 for all cases). The AW at 5–10 cm depth had a significant influence on SWB with an average relevance index of 2.87 (Wilcoxon signed-rank test P ≤ 0.05) for Laurentina farm. The AW at 0–5 cm depth had not significant influence on SWB with an average relevance index of 1.34 (independent group) and 0.97 (P < 0.05) for Laurentina and Poncena, respectively. The ANN model predicted the SWB with a RMSE no bigger than 13.76 mm. In conclusion, the SSWC at a depth of 5–10 cm can be used as an indicator for scheduling Hass avocado irrigation.

Suggested Citation

  • Erazo-Mesa, Edwin & Gómez, Edgar Hincapié & Sánchez, Andrés Echeverri, 2022. "Surface soil water content as an indicator of Hass avocado irrigation scheduling," Agricultural Water Management, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s0378377422004115
    DOI: 10.1016/j.agwat.2022.107864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422004115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Er-Raki, S. & Ezzahar, J. & Merlin, O. & Amazirh, A. & Hssaine, B. Ait & Kharrou, M.H. & Khabba, S. & Chehbouni, A., 2021. "Performance of the HYDRUS-1D model for water balance components assessment of irrigated winter wheat under different water managements in semi-arid region of Morocco," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Tu, Anguo & Xie, Songhua & Mo, Minghao & Song, Yuejun & Li, Ying, 2021. "Water budget components estimation for a mature citrus orchard of southern China based on HYDRUS-1D model," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Perry, Chris & Steduto, Pasquale & Allen, Richard. G. & Burt, Charles M., 2009. "Increasing productivity in irrigated agriculture: Agronomic constraints and hydrological realities," Agricultural Water Management, Elsevier, vol. 96(11), pages 1517-1524, November.
    4. Dabach, Sharon & Shani, Uri & Lazarovitch, Naftali, 2015. "Optimal tensiometer placement for high-frequency subsurface drip irrigation management in heterogeneous soils," Agricultural Water Management, Elsevier, vol. 152(C), pages 91-98.
    5. Mbabazi, Deanroy & Migliaccio, Kati W. & Crane, Jonathan H. & Fraisse, Clyde & Zotarelli, Lincoln & Morgan, Kelly T. & Kiggundu, Nicholas, 2017. "An irrigation schedule testing model for optimization of the Smartirrigation avocado app," Agricultural Water Management, Elsevier, vol. 179(C), pages 390-400.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    2. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    3. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    4. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    5. Buchholz, Matthias & Musshoff, Oliver, 2014. "The role of weather derivatives and portfolio effects in agricultural water management," Agricultural Water Management, Elsevier, vol. 146(C), pages 34-44.
    6. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    7. Nolz, R. & Cepuder, P. & Balas, J. & Loiskandl, W., 2016. "Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management," Agricultural Water Management, Elsevier, vol. 164(P2), pages 235-242.
    8. Zhou, Xinyao & Zhang, Yongqiang & Sheng, Zhuping & Manevski, Kiril & Andersen, Mathias N. & Han, Shumin & Li, Huilong & Yang, Yonghui, 2021. "Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework," Agricultural Water Management, Elsevier, vol. 249(C).
    9. Jackson, Tamara M. & Khan, Shahbaz & Hafeez, Mohsin, 2010. "A comparative analysis of water application and energy consumption at the irrigated field level," Agricultural Water Management, Elsevier, vol. 97(10), pages 1477-1485, October.
    10. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Lankford, Bruce, 2012. "Fictions, fractions, factorials and fractures; on the framing of irrigation efficiency," Agricultural Water Management, Elsevier, vol. 108(C), pages 27-38.
    12. Kaur, Lovepreet & Kaur, Anureet & Brar, A.S., 2021. "Water use efficiency of green gram (Vigna radiata L.) impacted by paddy straw mulch and irrigation regimes in north-western India," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Bali, Khaled M. & Mohamed, Abdelmoneim Zakaria & Begna, Sultan & Wang, Dong & Putnam, Daniel & Dahlke, Helen E. & Eltarabily, Mohamed Galal, 2023. "The use of HYDRUS-2D to simulate intermittent Agricultural Managed Aquifer Recharge (Ag-MAR) in Alfalfa in the San Joaquin Valley," Agricultural Water Management, Elsevier, vol. 282(C).
    14. Al-agele, Hadi A. & Jashami, Hisham & Higgins, Chad W., 2022. "Evaluation of novel ultrasonic sensor actuated nozzle in center pivot irrigation systems," Agricultural Water Management, Elsevier, vol. 262(C).
    15. Reinhard NOLZ & Willibald LOISKANDL & Gerhard KAMMERER & Margarita L. HIMMELBAUER, 2016. "Survey of soil water distribution in a vineyard and implications for subsurface drip irrigation control," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(4), pages 250-258.
    16. Soto-García, M. & Martínez-Alvarez, V. & García-Bastida, P.A. & Alcon, F. & Martin-Gorriz, B., 2013. "Effect of water scarcity and modernisation on the performance of irrigation districts in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 11-19.
    17. Ierna, Anita & Pandino, Gaetano & Lombardo, Sara & Mauromicale, Giovanni, 2011. "Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization," Agricultural Water Management, Elsevier, vol. 101(1), pages 35-41.
    18. Tarjuelo, José M. & Rodriguez-Diaz, Juan A. & Abadía, Ricardo & Camacho, Emilio & Rocamora, Carmen & Moreno, Miguel A., 2015. "Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies," Agricultural Water Management, Elsevier, vol. 162(C), pages 67-77.
    19. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    20. Amarasinghe, Upali A. & Sikka, Alok & Mandave, Vidya & Panda, R. K. & Gorantiwar, S. & Ambast, S. K., 2021. "Improving economic water productivity to enhance resilience in canal irrigation systems: a pilot study of the Sina Irrigation System in Maharashtra, India," Papers published in Journals (Open Access), International Water Management Institute, pages 23(2):447-4.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s0378377422004115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.