IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v102y2011i1p46-53.html
   My bibliography  Save this article

Validation of a methodology for grouping intakes of pressurized irrigation networks into sectors to minimize energy consumption

Author

Listed:
  • Jiménez-Bello, Miguel Ángel
  • Alzamora, Fernando Martínez
  • Castel, Juan Ramón
  • Intrigliolo, Diego S.

Abstract

A methodology to optimise the amount of energy consumed in pressurized irrigation systems was presented by Jimenez-Bello et al. (2010a). These authors proposed grouping pressurized irrigation network intakes, each of the water turnouts resulting from a shared hydrant, into sectors via a genetic algorithm. In the present research, the methodology was applied and validated in a water users association. Several energy efficiency indicators were calculated and compared during five consecutive seasons (2006–2010). The first two seasons, when the methodology was not employed, were used as reference for the results obtained from 2008 onwards, when the methodology was applied to the management of irrigation network. Results obtained in seasons 2008–2010 showed that the average energy savings were 16% in comparisons to the 2006 season. However, it should be noted that the potential, theoretical savings, could have been as high as 22.3% if the modelled grouping networks would have been accurately followed. There was in fact some discrepancy between the theoretical model outputs and the final groupings due to some intake restrictions. In addition, during the irrigation campaigns, the number of irrigation intakes that operated within each sector was not always equal to the modelled sectoring, a fact that reduced the overall water users association energy efficiency. This occurred particularly during rainy periods, when some users deliberately decided to close their manual irrigation intakes valves. Overall, results showed the potential of the validated methodology for optimising energy use. However, the final overall system efficiency might depend on specific constraints that need to be taken into account when attempting to use model output predictions.

Suggested Citation

  • Jiménez-Bello, Miguel Ángel & Alzamora, Fernando Martínez & Castel, Juan Ramón & Intrigliolo, Diego S., 2011. "Validation of a methodology for grouping intakes of pressurized irrigation networks into sectors to minimize energy consumption," Agricultural Water Management, Elsevier, vol. 102(1), pages 46-53.
  • Handle: RePEc:eee:agiwat:v:102:y:2011:i:1:p:46-53
    DOI: 10.1016/j.agwat.2011.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411002691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jackson, Tamara M. & Khan, Shahbaz & Hafeez, Mohsin, 2010. "A comparative analysis of water application and energy consumption at the irrigated field level," Agricultural Water Management, Elsevier, vol. 97(10), pages 1477-1485, October.
    2. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    3. Córcoles, J.I. & de Juan, J.A. & Ortega, J.F. & Tarjuelo, J.M. & Moreno, M.A., 2010. "Management evaluation of Water Users Associations using benchmarking techniques," Agricultural Water Management, Elsevier, vol. 98(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alonso Campos, J.C. & Jiménez-Bello, M.A. & Martínez Alzamora, F., 2020. "Real-time energy optimization of irrigation scheduling by parallel multi-objective genetic algorithms," Agricultural Water Management, Elsevier, vol. 227(C).
    2. Wakeel, Muhammad & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2016. "Energy consumption for water use cycles in different countries: A review," Applied Energy, Elsevier, vol. 178(C), pages 868-885.
    3. Lima, F.A & Martínez-Romero, A. & Tarjuelo, J.M. & Córcoles, J.I., 2018. "Model for management of an on-demand irrigation network based on irrigation scheduling of crops to minimize energy use (Part I): Model Development," Agricultural Water Management, Elsevier, vol. 210(C), pages 49-58.
    4. Juan Córcoles & José Tarjuelo & Pedro Carrión & Miguel Moreno, 2015. "Methodology to Minimize Energy Costs in an On-Demand Irrigation Network Based on Arranged Opening of Hydrants," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3697-3710, August.
    5. Lima, F.A. & Córcoles, J.I. & Tarjuelo, J.M. & Martínez-Romero, A., 2019. "Model for management of an on-demand irrigation network based on irrigation scheduling of crops to minimize energy use (Part II): Financial impact of regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 215(C), pages 44-54.
    6. Fouial, Abdelouahid & Fernández García, Irene & Bragalli, Cristiana & Brath, Armando & Lamaddalena, Nicola & Rodríguez Diaz, Juan Antonio, 2017. "Optimal operation of pressurised irrigation distribution systems operating by gravity," Agricultural Water Management, Elsevier, vol. 184(C), pages 77-85.
    7. Jiménez-Bello, M.A. & Royuela, A. & Manzano, J. & Prats, A. García & Martínez-Alzamora, F., 2015. "Methodology to improve water and energy use by proper irrigation scheduling in pressurised networks," Agricultural Water Management, Elsevier, vol. 149(C), pages 91-101.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soto-García, M. & Martínez-Alvarez, V. & García-Bastida, P.A. & Alcon, F. & Martin-Gorriz, B., 2013. "Effect of water scarcity and modernisation on the performance of irrigation districts in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 11-19.
    2. Tarjuelo, José M. & Rodriguez-Diaz, Juan A. & Abadía, Ricardo & Camacho, Emilio & Rocamora, Carmen & Moreno, Miguel A., 2015. "Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies," Agricultural Water Management, Elsevier, vol. 162(C), pages 67-77.
    3. Mushtaq, S. & Maraseni, T.N. & Reardon-Smith, K., 2013. "Climate change and water security: Estimating the greenhouse gas costs of achieving water security through investments in modern irrigation technology," Agricultural Systems, Elsevier, vol. 117(C), pages 78-89.
    4. Julián González-Trinidad & Hugo Enrique Júnez-Ferreira & Carlos Bautista-Capetillo & Laura Ávila Dávila & Cruz Octavio Robles Rovelo, 2020. "Improving the Water-Use Efficiency and the Agricultural Productivity: An Application Case in a Modernized Semiarid Region in North-Central Mexico," Sustainability, MDPI, vol. 12(19), pages 1-15, October.
    5. I. García & P. Montesinos & E. Poyato & J. Díaz, 2014. "Methodology for Detecting Critical Points in Pressurized Irrigation Networks with Multiple Water Supply Points," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1095-1109, March.
    6. Julio Berbel & Carlos Gutiérrez-Martín & Juan Rodríguez-Díaz & Emilio Camacho & Pilar Montesinos, 2015. "Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 663-678, February.
    7. Cervera-Gascó, Jorge & Montero, Jesús & Moreno, Miguel A., 2023. "An intelligent irrigation management model for direct injection of solar pumping systems," Agricultural Water Management, Elsevier, vol. 279(C).
    8. Moreno, M.A. & Medina, D. & Ortega, J.F. & Tarjuelo, J.M., 2012. "Optimal design of center pivot systems with water supplied from wells," Agricultural Water Management, Elsevier, vol. 107(C), pages 112-121.
    9. Song, Jianfeng & Guo, Yanan & Wu, Pute & Sun, SHikun, 2018. "The Agricultural Water Rebound Effect in China," Ecological Economics, Elsevier, vol. 146(C), pages 497-506.
    10. Ortega-Reig, M. & Sanchis-Ibor, C. & Palau-Salvador, G. & García-Mollá, M. & Avellá-Reus, L., 2017. "Institutional and management implications of drip irrigation introduction in collective irrigation systems in Spain," Agricultural Water Management, Elsevier, vol. 187(C), pages 164-172.
    11. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Tapsuwan, Sorada & Peña-Arancibia, Jorge L. & Lazarow, Neil & Albisetti, Melisa & Zheng, Hongxing & Rojas, Rodrigo & Torres-Alferez, Vianney & Chiew, Francis H.S. & Hopkins, Richard & Penton, David J., 2022. "A benefit cost analysis of strategic and operational management options for water management in hyper-arid southern Peru," Agricultural Water Management, Elsevier, vol. 265(C).
    13. Firat Arslan & Juan Ignacio Córcoles Tendero & Juan Antonio Rodríguez Díaz & Demetrio Antonio Zema, 2023. "Comparison of Irrigation Management in Water User Associations of Italy, Spain and Turkey Using Benchmarking Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 55-74, January.
    14. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    15. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    16. Forough Jafary & Chris Bradley, 2018. "Groundwater Irrigation Management and the Existing Challenges from the Farmers’ Perspective in Central Iran," Land, MDPI, vol. 7(1), pages 1-21, January.
    17. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    18. Martin-Gorriz, B. & Soto-García, M. & Martínez-Alvarez, V., 2014. "Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios," Energy, Elsevier, vol. 77(C), pages 478-488.
    19. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    20. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:102:y:2011:i:1:p:46-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.