IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v100y2011i1p18-24.html
   My bibliography  Save this article

Fresh tomato production for the Sydney market: An evaluation of options to reduce freshwater scarcity from agricultural water use

Author

Listed:
  • Page, Girija
  • Ridoutt, Brad
  • Bellotti, Bill

Abstract

In response to the growing concerns of freshwater scarcity, two metrics are considered for assessing the impacts of consumptive water use of a kg of fresh tomato supplied to the Sydney market. The first is the water use efficiency (WUE)—commonly used by agronomists which considers the absolute volumes of water consumed, and second, a recently developed method for water footprints based on Life Cycle Assessment (LCA) which describes the impacts in terms of contributing to freshwater scarcity. The results indicated that although a kg of tomato supplied from within Sydney had the highest water use efficiency (38L for a kg of tomato as compared to 39–78L from other regions of Australia), it had the biggest LCA-based water footprint (16L for a kg of tomato as compared to 1.9–2.2L from other regions of Australia). WUE as an indicator of agriculture water use is inappropriate to indicate the potential to contribute to local freshwater scarcity; potential stress on local and regional water resources, estimated using LCA-based water footprints, provide useful dimension to assess consumptive water use. Having both metrics will enable to achieve short term benefits at the farm level for saving water (through water use efficiency), while also recognising that longer term changes are required for alleviating freshwater scarcity (through LCA-based water footprints). Scenario modelling indicated relocation of production away from Sydney or modernisation of Sydney tomato greenhouse industry as a priority for reducing freshwater scarcity. The latter may be the best long term option to reduce additional emissions from transport and to take advantage of recycled water sources from Sydney's wastewater.

Suggested Citation

  • Page, Girija & Ridoutt, Brad & Bellotti, Bill, 2011. "Fresh tomato production for the Sydney market: An evaluation of options to reduce freshwater scarcity from agricultural water use," Agricultural Water Management, Elsevier, vol. 100(1), pages 18-24.
  • Handle: RePEc:eee:agiwat:v:100:y:2011:i:1:p:18-24
    DOI: 10.1016/j.agwat.2011.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411002241
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ness, Barry & Urbel-Piirsalu, Evelin & Anderberg, Stefan & Olsson, Lennart, 2007. "Categorising tools for sustainability assessment," Ecological Economics, Elsevier, vol. 60(3), pages 498-508, January.
    2. Çetin, Öner & Uygan, Demet, 2008. "The effect of drip line spacing, irrigation regimes and planting geometries of tomato on yield, irrigation water use efficiency and net return," Agricultural Water Management, Elsevier, vol. 95(8), pages 949-958, August.
    3. Assumpcio Anton & Juan I. Montero & Pere Munoz & Francesc Castells, 2005. "LCA and tomato production in Mediterranean greenhouses," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 4(2), pages 102-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bradley G. Ridoutt & Peerasak Sanguansri & Gregory S. Harper, 2011. "Comparing Carbon and Water Footprints for Beef Cattle Production in Southern Australia," Sustainability, MDPI, vol. 3(12), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    2. Lucia Mancini, 2013. "Conventional, Organic and Polycultural Farming Practices: Material Intensity of Italian Crops and Foodstuffs," Resources, MDPI, vol. 2(4), pages 1-23, December.
    3. Figge, Frank & Hahn, Tobias & Barkemeyer, Ralf, 2014. "The If, How and Where of assessing sustainable resource use," Ecological Economics, Elsevier, vol. 105(C), pages 274-283.
    4. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    5. Jean-Marc Douguet & Pierre Failler & Gianluca Ferraro, 2022. "Sustainability Assessment of the Societal Costs of Fishing Activities in a Deliberative Perspective," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    6. Diana Tuomasjukka & Staffan Berg & Marcus Lindner, 2013. "Managing Sustainability of Fennoscandian Forests and Their Use by Law and/or Agreement: For Whom and Which Purpose?," Sustainability, MDPI, vol. 6(1), pages 1-32, December.
    7. Georgiadou, Maria Christina & Hacking, Theophilus & Guthrie, Peter, 2012. "A conceptual framework for future-proofing the energy performance of buildings," Energy Policy, Elsevier, vol. 47(C), pages 145-155.
    8. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    9. Ngoc-Ninh Ho & Truong Lam Do & Dinh-Thao Tran & Trung Thanh Nguyen, 2022. "Indigenous pig production and welfare of ultra-poor ethnic minority households in the Northern mountains of Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 156-179, January.
    10. Schilling, Markus & Chiang, Lichun, 2011. "The effect of natural resources on a sustainable development policy: The approach of non-sustainable externalities," Energy Policy, Elsevier, vol. 39(2), pages 990-998, February.
    11. Alexandra Doernberg & Annette Piorr & Ingo Zasada & Dirk Wascher & Ulrich Schmutz, 2022. "Sustainability assessment of short food supply chains (SFSC): developing and testing a rapid assessment tool in one African and three European city regions," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(3), pages 885-904, September.
    12. Simone Di Leo & Marta Chicca & Cinzia Daraio & Andrea Guerrini & Stefano Scarcella, 2022. "A Framework for the Analysis of the Sustainability of the Energy Retail Market," Sustainability, MDPI, vol. 14(12), pages 1-28, June.
    13. Peura, Pekka, 2013. "From Malthus to sustainable energy—Theoretical orientations to reforming the energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 309-327.
    14. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    15. Weiwei Li & Pingtao Yi & Danning Zhang, 2018. "Sustainability Evaluation of Cities in Northeastern China Using Dynamic TOPSIS-Entropy Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    16. Michinori Uwasu & Keishiro Hara & Masashi Kuroda & Ji Han, 2024. "Assessing the Spatiotemporal Dynamics of Environmental Sustainability in China," Sustainability, MDPI, vol. 16(13), pages 1-14, June.
    17. Carlo Carraro & Lorenza Campagnolo & Fabio Eboli & Elisa Lanzi & Ramiro Parrado & Elisa Portale, 2012. "Quantifying Sustainability: A New Approach and World Ranking," Working Papers 2012.94, Fondazione Eni Enrico Mattei.
    18. Frame, Bob & Brown, Judy, 2008. "Developing post-normal technologies for sustainability," Ecological Economics, Elsevier, vol. 65(2), pages 225-241, April.
    19. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2024. "A Sustainable Water Resources Management Assessment Framework (SWRM-AF) for Arid and Semi-Arid Regions—Part 1: Developing the Conceptual Framework," Sustainability, MDPI, vol. 16(7), pages 1-43, March.
    20. Castellani, V. & Sala, S., 2010. "Sustainable performance index for tourism policy development," Tourism Management, Elsevier, vol. 31(6), pages 871-880.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:100:y:2011:i:1:p:18-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.