IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v98y2008i2p74-81.html
   My bibliography  Save this article

Energy requirements for transport and surface application of liquid pig manure in Manitoba, Canada

Author

Listed:
  • Wiens, M.J.
  • Entz, M.H.
  • Wilson, C.
  • Ominski, K.H.

Abstract

The objective of this study was to conduct a thorough accounting of energy used to transport liquid pig manure from farm storage to the field and to surface-apply the manure. Energy consumption was determined using both energy data from the literature plus data from field-scale research. Energy consumption was compared between two manure application systems (the drag hose and the slurry wagon systems) and two application timing treatments (single vs. twice-annual manure application). The single annual application of liquid pig manure applied at 81.5 m3 ha-1 and transported 1.8 km from storage to field consumed 2180 mJ ha-1 with the drag hose system and 2185 mJ ha-1 with the slurry wagon system. The twice-annual manure application regime used 2726 and 2209 mJ ha-1 for the drag hose and slurry wagon systems, respectively. When energy use was calculated on the basis of MJ per kg of available N, liquid pig manure applied once annually with the slurry wagon system provided N at 17.76 mJ kg-1 of available N, which was 33% of the energy cost of N from anhydrous ammonia and 23% of the energy cost of N from urea. Manure transport distance could be increased to 8.4 km before the energy cost per kg of available N from pig manure was equivalent to anhydrous ammonia, and up to 12.3 km before the energy cost of manure N was equivalent to urea N. Despite the high energy cost to deliver liquid pig manure from storage to field, the much lower cost per kg of available N compared to inorganic fertilizer N highlights the opportunities that exist for improving the energy efficiency of industrial agriculture by replacing inorganic fertilizers with manure.

Suggested Citation

  • Wiens, M.J. & Entz, M.H. & Wilson, C. & Ominski, K.H., 2008. "Energy requirements for transport and surface application of liquid pig manure in Manitoba, Canada," Agricultural Systems, Elsevier, vol. 98(2), pages 74-81, September.
  • Handle: RePEc:eee:agisys:v:98:y:2008:i:2:p:74-81
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(08)00041-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swanton, Clarence J. & Murphy, Stephen D. & Hume, David J. & Clements, David R., 1996. "Recent improvements in the energy efficiency of agriculture: Case studies from Ontario, Canada," Agricultural Systems, Elsevier, vol. 52(4), pages 399-418, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pervanchon, F. & Bockstaller, C. & Girardin, P., 2002. "Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator," Agricultural Systems, Elsevier, vol. 72(2), pages 149-172, May.
    2. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    3. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    4. Özgöz, Engin & Altuntaş, Ebubekir & Asiltürk, Murat, 2017. "Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey," Energy, Elsevier, vol. 141(C), pages 1517-1523.
    5. Patrizia Busato & Alessandro Sopegno & Remigio Berruto & Dionysis Bochtis & Angela Calvo, 2017. "A Web-Based Tool for Energy Balance Estimation in Multiple-Crops Production Systems," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    6. Liang, Long & Lal, Rattan & Ridoutt, Bradley G. & Zhao, Guishen & Du, Zhangliu & Li, Li & Feng, Dangyang & Wang, Liyuan & Peng, Peng & Hang, Sheng & Wu, Wenliang, 2018. "Multi-indicator assessment of a water-saving agricultural engineering project in North Beijing, China," Agricultural Water Management, Elsevier, vol. 200(C), pages 34-46.
    7. Persson, Tomas & Garcia y Garcia, Axel & Paz, Joel & Jones, Jim & Hoogenboom, Gerrit, 2009. "Maize ethanol feedstock production and net energy value as affected by climate variability and crop management practices," Agricultural Systems, Elsevier, vol. 100(1-3), pages 11-21, April.
    8. Chaudhary, V.P. & Gangwar, B. & Pandey, D.K. & Gangwar, K.S., 2009. "Energy auditing of diversified rice–wheat cropping systems in Indo-gangetic plains," Energy, Elsevier, vol. 34(9), pages 1091-1096.
    9. Cao, Shuyan & Xie, Gaodi & Zhen, Lin, 2010. "Total embodied energy requirements and its decomposition in China's agricultural sector," Ecological Economics, Elsevier, vol. 69(7), pages 1396-1404, May.
    10. Wirsenius, Stefan, 2003. "Efficiencies and biomass appropriation of food commodities on global and regional levels," Agricultural Systems, Elsevier, vol. 77(3), pages 219-255, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:98:y:2008:i:2:p:74-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.