IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v176y2019ics0308521x19304275.html
   My bibliography  Save this article

Backgrounding strategy effects on farm productivity, profitability and greenhouse gas emissions of cow-calf systems in the Flooding Pampas of Argentina

Author

Listed:
  • Bilotto, Franco
  • Recavarren, Paulo
  • Vibart, Ronaldo
  • Machado, Claudio F.

Abstract

Beef grazing systems need to improve their environmental sustainability while increasing productivity to meet future demand. In a context of climate and prices variability, the main aim of our study was to explore the current trend in cow-calf operations of including backgrounding strategies on productivity, profitability and greenhouse gas (GHG) emissions in a representative beef cattle system from the Laprida Basin (Flooding Pampas, Argentina), applying an integrated assessment with modelling tools. The mean liveweight gain (LWG) of pure cow-calf systems was lower than systems that included backgrounding, it decreased as stocking rates (SR) increased, and it was increased when the stocker contribution (0.2 to 0.4 steer/cow rate), sales weights (steers 390 kg LW and heifers 320 kg LW) and supplementation level (>1% LW) were higher. Liveweight production and operating profits showed a curvilinear response to SR, reaching a plateau close to 0.5 cows ha−1. As expected, GHG emissions intensity (EI; kg CO2e kg−1 LW produced) was higher in pure cow-calf scenarios. If a grazing intensity (i.e. ratio between biomass removed by grazing and biomass available for grazing) beyond 0.6 was to be avoided to prevent long-term overgrazing and trade-offs among the variables assessed, the best option was to decrease SR to 0.45 cows ha−1. On such stocking rate, LWG was improved by 8% (±SD; ±3%), but LW production, operating profits, and GHG emissions intensity were reduced by 1% (±2%), 9% (±4%) and 10% (±1%), respectively, compared with 0.50 cows ha−1. The best risk-efficient combinations were depicted by backgrounding options and the variation of profit was mainly explained by prices variability (CV = 40 ± 3%) and, to a lesser extent by climate variability (CV = 11 ± 3%). Therefore, backgrounding strategies provide opportunities to farmers to increase farm productivity and profitability at the lowest risk for a given level of expected return, while reducing greenhouse gas emissions per unit of product.

Suggested Citation

  • Bilotto, Franco & Recavarren, Paulo & Vibart, Ronaldo & Machado, Claudio F., 2019. "Backgrounding strategy effects on farm productivity, profitability and greenhouse gas emissions of cow-calf systems in the Flooding Pampas of Argentina," Agricultural Systems, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:agisys:v:176:y:2019:i:c:s0308521x19304275
    DOI: 10.1016/j.agsy.2019.102688
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X19304275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.102688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cacho, O. J. & Bywater, A. C. & Dillon, J. L., 1999. "Assessment of production risk in grazing models," Agricultural Systems, Elsevier, vol. 60(2), pages 87-98, May.
    2. Chapman, D.F. & Kenny, S.N. & Beca, D. & Johnson, I.R., 2008. "Pasture and forage crop systems for non-irrigated dairy farms in southern Australia. 2. Inter-annual variation in forage supply, and business risk," Agricultural Systems, Elsevier, vol. 97(3), pages 126-138, June.
    3. Cacho, O. J. & Finlayson, J. D. & Bywater, A. C., 1995. "A simulation model of grazing sheep: II. Whole farm model," Agricultural Systems, Elsevier, vol. 48(1), pages 27-50.
    4. Pacín, Fernando & Oesterheld, Martín, 2015. "Closing the technological gap of animal and crop production through technical assistance," Agricultural Systems, Elsevier, vol. 137(C), pages 101-107.
    5. Pacín, Fernando & Oesterheld, Martín, 2014. "In-farm diversity stabilizes return on capital in Argentine agro-ecosystems," Agricultural Systems, Elsevier, vol. 124(C), pages 51-59.
    6. James P. Houck, 1973. "Some Aspects Of Income Stabilization For Primary Producers," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 17(3), pages 200-215, December.
    7. Andrew D. Moore & Richard J. Eckard & Peter J. Thorburn & Peter R. Grace & Enli Wang & Deli Chen, 2014. "Mathematical modeling for improved greenhouse gas balances, agro‐ecosystems, and policy development: lessons from the Australian experience," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 5(6), pages 735-752, November.
    8. Nasca, J.A. & Feldkamp, C.R. & Arroquy, J.I. & Colombatto, D., 2015. "Efficiency and stability in subtropical beef cattle grazing systems in the northwest of Argentina," Agricultural Systems, Elsevier, vol. 133(C), pages 85-96.
    9. Finlayson, J. D. & Cacho, O. J. & Bywater, A. C., 1995. "A simulation model of grazing sheep: I. Animal growth and intake," Agricultural Systems, Elsevier, vol. 48(1), pages 1-25.
    10. Becona, Gonzalo & Astigarraga, Laura & Picasso, Valentin D., 2014. "Greenhouse Gas Emissions of Beef Cow-Calf Grazing Systems in Uruguay," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 3(2).
    11. Grigera, Gonzalo & Oesterheld, Martin & Pacin, Fernando, 2007. "Monitoring forage production for farmers' decision making," Agricultural Systems, Elsevier, vol. 94(3), pages 637-648, June.
    12. María I. Nieto & Olivia Barrantes & Liliana Privitello & Ramón Reiné, 2018. "Greenhouse Gas Emissions from Beef Grazing Systems in Semi-Arid Rangelands of Central Argentina," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    13. Houck, James P., 1973. "Some Aspects Of Income Stabilization For Primary Producers," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 17(3), pages 1-16, December.
    14. Berger, Horacio & Bilotto, Franco & Bell, Lindsay W. & Machado, Claudio F., 2017. "Feedbase intervention in a cow-calf system in the flooding pampas of Argentina: 2. Estimation of the marginal value of additional feed," Agricultural Systems, Elsevier, vol. 158(C), pages 68-77.
    15. Chapman, D.F. & Kenny, S.N. & Beca, D. & Johnson, I.R., 2008. "Pasture and forage crop systems for non-irrigated dairy farms in southern Australia. 1. Physical production and economic performance," Agricultural Systems, Elsevier, vol. 97(3), pages 108-125, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Kai, 2024. "Agricultural adaptation to the environmental and social consequences of climate change in mixed farming systems: Evidence from North Xinjiang, China," Agricultural Systems, Elsevier, vol. 217(C).
    2. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    3. Arrieta, Ezequiel M. & Cabrol, Diego A. & Cuchietti, Anibal & González, Alejandro D., 2020. "Biomass consumption and environmental footprints of beef cattle production in Argentina," Agricultural Systems, Elsevier, vol. 185(C).
    4. Catalina Fernández Rosso & Franco Bilotto & Andrea Lauric & Gerónimo A. De Leo & Carlos Torres Carbonell & Mauricio A. Arroqui & Claus G. Sørensen & Claudio F. Machado, 2021. "An innovation path in Argentinean cow–calf operations: Insights from participatory farm system modelling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 38(4), pages 488-502, August.
    5. Bilotto, Franco & Vibart, Ronaldo & Wall, Andrew & Machado, Claudio F., 2021. "Estimation of the inter-annual marginal value of additional feed and its replacement cost for beef cattle systems in the Flooding Pampas of Argentina," Agricultural Systems, Elsevier, vol. 187(C).
    6. André Pastori D’Aurea & Abmael da Silva Cardoso & Yuri Santa Rosa Guimarães & Lauriston Bertelli Fernandes & Luis Eduardo Ferreira & Ricardo Andrade Reis, 2021. "Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management," Sustainability, MDPI, vol. 13(13), pages 1-9, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catalina Fernández Rosso & Franco Bilotto & Andrea Lauric & Gerónimo A. De Leo & Carlos Torres Carbonell & Mauricio A. Arroqui & Claus G. Sørensen & Claudio F. Machado, 2021. "An innovation path in Argentinean cow–calf operations: Insights from participatory farm system modelling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 38(4), pages 488-502, August.
    2. Gicheha, M.G. & Edwards, G.R. & Bell, S.T. & Burtt, E.S. & Bywater, A.C., 2014. "Embedded risk management in dryland sheep systems II. Risk analysis," Agricultural Systems, Elsevier, vol. 124(C), pages 1-11.
    3. Fariña, S.R. & Alford, A. & Garcia, S.C. & Fulkerson, W.J., 2013. "An integrated assessment of business risk for pasture-based dairy farm systems intensification," Agricultural Systems, Elsevier, vol. 115(C), pages 10-20.
    4. Bilotto, Franco & Vibart, Ronaldo & Wall, Andrew & Machado, Claudio F., 2021. "Estimation of the inter-annual marginal value of additional feed and its replacement cost for beef cattle systems in the Flooding Pampas of Argentina," Agricultural Systems, Elsevier, vol. 187(C).
    5. Berger, Horacio & Bilotto, Franco & Bell, Lindsay W. & Machado, Claudio F., 2017. "Feedbase intervention in a cow-calf system in the flooding pampas of Argentina: 2. Estimation of the marginal value of additional feed," Agricultural Systems, Elsevier, vol. 158(C), pages 68-77.
    6. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    7. John C. Quiggin & Jock R. Anderson, 1979. "Stabilisation And Risk Reduction In Australian Agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 23(3), pages 191-206, December.
    8. González-Quintero, Ricardo & van Wijk, Mark T. & Ruden, Alejandro & Gómez, Manuel & Pantevez, Heiber & Castro-Llanos, Fabio & Notenbaert, An & Arango, Jacobo, 2022. "Yield gap analysis to identify attainable milk and meat productivities and the potential for greenhouse gas emissions mitigation in cattle systems of Colombia," Agricultural Systems, Elsevier, vol. 195(C).
    9. Piggott, Roley R., 1978. "Decomposing The Variance Of Gross Revenue Into Demand And Supply Components," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 22(2-3), pages 1-13, August.
    10. Behrendt, Karl & Cacho, Oscar & Scott, James M. & Jones, Randall, 2016. "Using seasonal stochastic dynamic programming to identify optimal management decisions that achieve maximum economic sustainable yields from grasslands under climate risk," Agricultural Systems, Elsevier, vol. 145(C), pages 13-23.
    11. Bohan, A. & Shalloo, L. & Malcolm, B. & Ho, C.K.M. & Creighton, P. & Boland, T.M. & McHugh, N., 2016. "Description and validation of the Teagasc Lamb Production Model," Agricultural Systems, Elsevier, vol. 148(C), pages 124-134.
    12. Pacín, Fernando & Oesterheld, Martín, 2015. "Closing the technological gap of animal and crop production through technical assistance," Agricultural Systems, Elsevier, vol. 137(C), pages 101-107.
    13. de Boer, A.J., 1977. "Rural Product Promotion: Economic Aspects Of Promotability, Organization And Public Assistance," Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 45(04), pages 1-25, December.
    14. Arrieta, Ezequiel M. & Cabrol, Diego A. & Cuchietti, Anibal & González, Alejandro D., 2020. "Biomass consumption and environmental footprints of beef cattle production in Argentina," Agricultural Systems, Elsevier, vol. 185(C).
    15. Gicheha, M.G. & Edwards, G.R. & Bell, S.T. & Bywater, A.C., 2014. "Embedded risk management in dryland sheep systems I. Field results and development of a destocking algorithm," Agricultural Systems, Elsevier, vol. 124(C), pages 12-20.
    16. Chapman, D.F. & Kenny, S.N. & Lane, N., 2011. "Pasture and forage crop systems for non-irrigated dairy farms in southern Australia: 3. Estimated economic value of additional home-grown feed," Agricultural Systems, Elsevier, vol. 104(8), pages 589-599, October.
    17. Cacho, O. J. & Bywater, A. C. & Dillon, J. L., 1999. "Assessment of production risk in grazing models," Agricultural Systems, Elsevier, vol. 60(2), pages 87-98, May.
    18. Alston, Julian M. & Freebairn, John W., 1988. "Producer Price Equalization," Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 56(03), pages 1-34, December.
    19. Vogeler, Iris & Vibart, Ronaldo & Cichota, Rogerio, 2017. "Potential benefits of diverse pasture swards for sheep and beef farming," Agricultural Systems, Elsevier, vol. 154(C), pages 78-89.
    20. Girard, N. & Hubert, B., 1999. "Modelling expert knowledge with knowledge-based systems to design decision aids : The example of a knowledge-based model on grazing management," Agricultural Systems, Elsevier, vol. 59(2), pages 123-144, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:176:y:2019:i:c:s0308521x19304275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.