IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v158y2017icp68-77.html
   My bibliography  Save this article

Feedbase intervention in a cow-calf system in the flooding pampas of Argentina: 2. Estimation of the marginal value of additional feed

Author

Listed:
  • Berger, Horacio
  • Bilotto, Franco
  • Bell, Lindsay W.
  • Machado, Claudio F.

Abstract

Temporal variability in the availability of forage reduces the production and economic performance of livestock systems. The marginal value of feed (MVF, the possible gross economic benefit of additional feed on offer during an annual cycle), was assessed under the expected variability of climate and prices in a cow-calf operation from the Flooding Pampas, Argentina. Herbage mass accumulation (HMA) was simulated on a daily basis over 20 different years with DairyMod, grouped by month and season and where the HMA was equal or below 50% of its long-term average, it was tagged as “Dry”. Typical monthly pasture growth rates were synthetically depicted for average years (Average), or with dry autumn (D-Au), winter (D-Wi), spring (D-Sp) or summer (D-Su) conditions. These pasture growth curves were incorporated into whole-farm scenarios which were modelled with SIMUGAN, a bio-economic whole-farm model. Farm scenarios were baseline (unchanged HMA) or with additional 10% of the annual HMA. This additional feed was either evenly distributed across each month of the year (all year), or the full amount provided in one of the four seasons. These scenarios were repeated in a factorial design across a range of stocking rates (SR; 0.9–1.3cows/ha) on an average year or years including one dry season (D-Au, D-Wi, D-Sp orD-Su). SIMUGAN results were fed to an ad-hoc built model to calculate production and market risk profiles. In years with average HMA, MVF were always below 0.05US$/kg DM but the presence of a dry season caused significantly higher MVF. Years with dry autumn presented the highest economic responses when the extra feed was fed during autumn or winter. MVF analyses showed a positive impact of additional forage only above 1.1head/ha and this increased with SR, whereas MVF at the low SR were mostly negative due to extra hay making costs. At 1.1 and 1.2head/ha, allocating additional feed in autumn produced a higher return (0.04 and 0.08US$/kg DM) than feed provided at other times of the year (averaging 0.02 and 0.05US$/kg DM). Otherwise, at 1.3 SR extra feed in winter always had the highest MVF (up to 0.19US$/kg DM). Bio-physical variables of livestock demand and seasonality of pasture growth were the main drivers of MVF variability. Overall, the framework developed by integrating forage, livestock and economic models “in a series” effectively identified the economic feasibility of changes to the farm feed-base under different climatic and livestock management conditions.

Suggested Citation

  • Berger, Horacio & Bilotto, Franco & Bell, Lindsay W. & Machado, Claudio F., 2017. "Feedbase intervention in a cow-calf system in the flooding pampas of Argentina: 2. Estimation of the marginal value of additional feed," Agricultural Systems, Elsevier, vol. 158(C), pages 68-77.
  • Handle: RePEc:eee:agisys:v:158:y:2017:i:c:p:68-77
    DOI: 10.1016/j.agsy.2017.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17304286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2017.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chapman, D.F. & Kenny, S.N. & Beca, D. & Johnson, I.R., 2008. "Pasture and forage crop systems for non-irrigated dairy farms in southern Australia. 2. Inter-annual variation in forage supply, and business risk," Agricultural Systems, Elsevier, vol. 97(3), pages 126-138, June.
    2. Chapman, D.F. & Kenny, S.N. & Lane, N., 2011. "Pasture and forage crop systems for non-irrigated dairy farms in southern Australia: 3. Estimated economic value of additional home-grown feed," Agricultural Systems, Elsevier, vol. 104(8), pages 589-599, October.
    3. Pacín, Fernando & Oesterheld, Martín, 2015. "Closing the technological gap of animal and crop production through technical assistance," Agricultural Systems, Elsevier, vol. 137(C), pages 101-107.
    4. Chapman, D.F. & Kenny, S.N. & Beca, D. & Johnson, I.R., 2008. "Pasture and forage crop systems for non-irrigated dairy farms in southern Australia. 1. Physical production and economic performance," Agricultural Systems, Elsevier, vol. 97(3), pages 108-125, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilotto, Franco & Recavarren, Paulo & Vibart, Ronaldo & Machado, Claudio F., 2019. "Backgrounding strategy effects on farm productivity, profitability and greenhouse gas emissions of cow-calf systems in the Flooding Pampas of Argentina," Agricultural Systems, Elsevier, vol. 176(C).
    2. Catalina Fernández Rosso & Franco Bilotto & Andrea Lauric & Gerónimo A. De Leo & Carlos Torres Carbonell & Mauricio A. Arroqui & Claus G. Sørensen & Claudio F. Machado, 2021. "An innovation path in Argentinean cow–calf operations: Insights from participatory farm system modelling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 38(4), pages 488-502, August.
    3. Bilotto, Franco & Vibart, Ronaldo & Wall, Andrew & Machado, Claudio F., 2021. "Estimation of the inter-annual marginal value of additional feed and its replacement cost for beef cattle systems in the Flooding Pampas of Argentina," Agricultural Systems, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catalina Fernández Rosso & Franco Bilotto & Andrea Lauric & Gerónimo A. De Leo & Carlos Torres Carbonell & Mauricio A. Arroqui & Claus G. Sørensen & Claudio F. Machado, 2021. "An innovation path in Argentinean cow–calf operations: Insights from participatory farm system modelling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 38(4), pages 488-502, August.
    2. Bilotto, Franco & Recavarren, Paulo & Vibart, Ronaldo & Machado, Claudio F., 2019. "Backgrounding strategy effects on farm productivity, profitability and greenhouse gas emissions of cow-calf systems in the Flooding Pampas of Argentina," Agricultural Systems, Elsevier, vol. 176(C).
    3. Fariña, S.R. & Alford, A. & Garcia, S.C. & Fulkerson, W.J., 2013. "An integrated assessment of business risk for pasture-based dairy farm systems intensification," Agricultural Systems, Elsevier, vol. 115(C), pages 10-20.
    4. Chapman, D.F. & Kenny, S.N. & Lane, N., 2011. "Pasture and forage crop systems for non-irrigated dairy farms in southern Australia: 3. Estimated economic value of additional home-grown feed," Agricultural Systems, Elsevier, vol. 104(8), pages 589-599, October.
    5. Vogeler, Iris & Vibart, Ronaldo & Cichota, Rogerio, 2017. "Potential benefits of diverse pasture swards for sheep and beef farming," Agricultural Systems, Elsevier, vol. 154(C), pages 78-89.
    6. Bilotto, Franco & Vibart, Ronaldo & Wall, Andrew & Machado, Claudio F., 2021. "Estimation of the inter-annual marginal value of additional feed and its replacement cost for beef cattle systems in the Flooding Pampas of Argentina," Agricultural Systems, Elsevier, vol. 187(C).
    7. Lewis, Claire D. & Smith, Kevin F. & Jacobs, Joe L. & Ho, Christie K.M. & Leddin, Clare M. & Malcolm, Bill, 2020. "Using a two-price market value method to value extra pasture DM in different seasons," Agricultural Systems, Elsevier, vol. 178(C).
    8. Smith, Andrew P. & Western, Andrew W., 2013. "Predicting nitrogen dynamics in a dairy farming catchment using systems synthesis modelling," Agricultural Systems, Elsevier, vol. 115(C), pages 144-154.
    9. Ojeda, J.J. & Pembleton, K.G. & Islam, M.R. & Agnusdei, M.G. & Garcia, S.C., 2016. "Evaluation of the agricultural production systems simulator simulating Lucerne and annual ryegrass dry matter yield in the Argentine Pampas and south-eastern Australia," Agricultural Systems, Elsevier, vol. 143(C), pages 61-75.
    10. Christie, K.M. & Smith, A.P. & Rawnsley, R.P. & Harrison, M.T. & Eckard, R.J., 2020. "Simulated seasonal responses of grazed dairy pastures to nitrogen fertilizer in SE Australia: N loss and recovery," Agricultural Systems, Elsevier, vol. 182(C).
    11. Stirling, Sofía & Fariña, Santiago & Pacheco, David & Vibart, Ronaldo, 2021. "Whole-farm modelling of grazing dairy systems in Uruguay," Agricultural Systems, Elsevier, vol. 193(C).
    12. Matthew J. Bell & Brendan R. Cullen & Ian R. Johnson & Richard J. Eckard, 2012. "Modelling Nitrogen Losses from Sheep Grazing Systems with Different Spatial Distributions of Excreta," Agriculture, MDPI, vol. 2(4), pages 1-13, September.
    13. Christie, Karen M. & Smith, Andrew P. & Rawnsley, Richard P. & Harrison, Matthew T. & Eckard, Richard J., 2018. "Simulated seasonal responses of grazed dairy pastures to nitrogen fertilizer in SE Australia: Pasture production," Agricultural Systems, Elsevier, vol. 166(C), pages 36-47.
    14. Tarrant, Katherine A. & Armstrong, Dan P. & Ho, Christie K.M. & Wales, W.J. & Malcolm, Bill, 2010. "An economic analysis of options for utilising additional land on a high rainfall Gippsland dairy farm," 2010 Conference (54th), February 10-12, 2010, Adelaide, Australia 59164, Australian Agricultural and Resource Economics Society.
    15. Qing Zhang & Juan Li & Tiaojun Xiao, 2022. "Contract design for technology sharing between two farmers," Annals of Operations Research, Springer, vol. 314(2), pages 677-707, July.
    16. Chapman, D.F. & Kenny, S.N. & Beca, D. & Johnson, I.R., 2008. "Pasture and forage crop systems for non-irrigated dairy farms in southern Australia. 2. Inter-annual variation in forage supply, and business risk," Agricultural Systems, Elsevier, vol. 97(3), pages 126-138, June.
    17. Piotr Goliński & Patrycja Sobolewska & Barbara Stefańska & Barbara Golińska, 2022. "Virtual Fencing Technology for Cattle Management in the Pasture Feeding System—A Review," Agriculture, MDPI, vol. 13(1), pages 1-14, December.
    18. Semara, Lounis & Mouffok, Charefeddine & Madani, Toufik, 2013. "Livestock Farming Systems and Cattle Production Orientation in Eastern High Plains of Algeria, Cattle Farming System in Algerian Semi Arid Region," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 3(4), pages 1-8, December.
    19. Eastwood, C.R. & Chapman, D.F. & Paine, M.S., 2012. "Networks of practice for co-construction of agricultural decision support systems: Case studies of precision dairy farms in Australia," Agricultural Systems, Elsevier, vol. 108(C), pages 10-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:158:y:2017:i:c:p:68-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.