IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v173y2019icp335-344.html
   My bibliography  Save this article

Point pattern simulation modelling of extensive and intensive chicken farming in Thailand: Accounting for clustering and landscape characteristics

Author

Listed:
  • Chaiban, Celia
  • Biscio, Christophe
  • Thanapongtharm, Weerapong
  • Tildesley, Michael
  • Xiao, Xiangming
  • Robinson, Timothy P.
  • Vanwambeke, Sophie O.
  • Gilbert, Marius

Abstract

In recent decades, intensification of animal production has been occurring rapidly in transition economies to meet the growing demands of increasingly urban populations. This comes with significant environmental, health and social impacts. To assess these impacts, detailed maps of livestock distributions have been developed by downscaling census data at the pixel level (10 km or 1 km), providing estimates of the density of animals in each pixel. However, these data remain at fairly coarse scale and many epidemiological or environmental science applications would make better use of data where the distribution and size of farms are predicted rather than the number of animals per pixel. Based on detailed 2010 census data, we investigated the spatial point pattern distribution of extensive and intensive chicken farms in Thailand. We parameterized point pattern simulation models for extensive and intensive chicken farms and evaluated these models in different parts of Thailand for their capacity to reproduce the correct level of spatial clustering and the most likely locations of the farm clusters. We found that both the level of clustering and location of clusters could be simulated with reasonable accuracy by our farm distribution models. Furthermore, intensive chicken farms tended to be much more clustered than extensive farms, and their locations less easily predicted using simple spatial factors such as human populations. These point-pattern simulation models could be used to downscale coarse administrative level livestock census data into farm locations. This methodology could be of particular value in countries where farm location data are unavailable.

Suggested Citation

  • Chaiban, Celia & Biscio, Christophe & Thanapongtharm, Weerapong & Tildesley, Michael & Xiao, Xiangming & Robinson, Timothy P. & Vanwambeke, Sophie O. & Gilbert, Marius, 2019. "Point pattern simulation modelling of extensive and intensive chicken farming in Thailand: Accounting for clustering and landscape characteristics," Agricultural Systems, Elsevier, vol. 173(C), pages 335-344.
  • Handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:335-344
    DOI: 10.1016/j.agsy.2019.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17309150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mari Myllymäki & Tomáš Mrkvička & Pavel Grabarnik & Henri Seijo & Ute Hahn, 2017. "Global envelope tests for spatial processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 381-404, March.
    2. Andrea E Gaughan & Forrest R Stevens & Catherine Linard & Peng Jia & Andrew J Tatem, 2013. "High Resolution Population Distribution Maps for Southeast Asia in 2010 and 2015," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
    3. Christopher L Burdett & Brian R Kraus & Sarah J Garza & Ryan S Miller & Kathe E Bjork, 2015. "Simulating the Distribution of Individual Livestock Farms and Their Populations in the United States: An Example Using Domestic Swine (Sus scrofa domesticus) Farms," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-21, November.
    4. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    5. A. J. Baddeley & J. Møller & R. Waagepetersen, 2000. "Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 329-350, November.
    6. Timothy P Robinson & G R William Wint & Giulia Conchedda & Thomas P Van Boeckel & Valentina Ercoli & Elisa Palamara & Giuseppina Cinardi & Laura D'Aietti & Simon I Hay & Marius Gilbert, 2014. "Mapping the Global Distribution of Livestock," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-13, May.
    7. Marius Gilbert & Giulia Conchedda & Thomas P Van Boeckel & Giuseppina Cinardi & Catherine Linard & Gaëlle Nicolas & Weerapong Thanapongtharm & Laura D'Aietti & William Wint & Scott H Newman & Timothy , 2015. "Income Disparities and the Global Distribution of Intensively Farmed Chicken and Pigs," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-14, July.
    8. K. S. Li & Y. Guan & J. Wang & G. J. D. Smith & K. M. Xu & L. Duan & A. P. Rahardjo & P. Puthavathana & C. Buranathai & T. D. Nguyen & A. T. S. Estoepangestie & A. Chaisingh & P. Auewarakul & H. T. Lo, 2004. "Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia," Nature, Nature, vol. 430(6996), pages 209-213, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kateřina Koňasová & Jiří Dvořák, 2021. "Stochastic Reconstruction for Inhomogeneous Point Patterns," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 527-547, June.
    2. Ghorbani, Mohammad & Vafaei, Nafiseh & Dvořák, Jiří & Myllymäki, Mari, 2021. "Testing the first-order separability hypothesis for spatio-temporal point patterns," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    3. Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
    4. Ouma, James Okuro & De Groote, Hugo & Owuor, George, 2006. "Determinants of Improved Maize Seed and Fertilizer Use in Kenya: Policy Implications," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25433, International Association of Agricultural Economists.
    5. Alexander, Corinne E., 2002. "The Role Of Seed Company Supplied Information In Farmers' Decisions," 2002 Annual meeting, July 28-31, Long Beach, CA 19617, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Mekonnen, Daniel Ayalew & Gerber, Nicolas & Matz, Julia Anna, 2018. "Gendered Social Networks, Agricultural Innovations, and Farm Productivity in Ethiopia," World Development, Elsevier, vol. 105(C), pages 321-335.
    7. Langyintuo, Augustine S. & Mungoma, Catherine, 2008. "The effect of household wealth on the adoption of improved maize varieties in Zambia," Food Policy, Elsevier, vol. 33(6), pages 550-559, December.
    8. Cuong Le Van & Nguyen To The, 2019. "Farmers’ adoption of organic production," Asia-Pacific Journal of Regional Science, Springer, vol. 3(1), pages 33-59, February.
    9. Gedikoglu, Haluk & McCann, Laura M.J. & Artz, Georgeanne M., 2011. "Off-Farm Employment Effects on Adoption of Nutrient Management Practices," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 40(2), pages 1-14, August.
    10. Vera Castillo, Y.B. & Pritchard, H.W. & Frija, A. & Chellattan Veettil, P. & Cuevas Sanchez, J.A. & Van Damme, P. & Van Huylenbroeck, G., 2014. "Production viability and farmers’ willingness to adopt Jatropha curcas L. as a biofuel source in traditional agroecosystems in Totonacapan, Mexico," Agricultural Systems, Elsevier, vol. 125(C), pages 42-49.
    11. Anjani Kumar & Ashok K. Mishra & Sunil Saroj & Vinay K. Sonkar & Ganesh Thapa & Pramod K. Joshi, 2020. "Food safety measures and food security of smallholder dairy farmers: Empirical evidence from Bihar, India," Agribusiness, John Wiley & Sons, Ltd., vol. 36(3), pages 363-384, June.
    12. Smale, Melinda & Assima, Amidou & Kergna, Alpha & Thériault, Veronique & Weltzien, Eva, 2016. "Farm Family Effects Of Improved Sorghum Varieties In Mali: A Multivalued Treatment Approach," Feed the Future Innovation Lab for Food Security Policy Research Papers 259076, Michigan State University, Department of Agricultural, Food, and Resource Economics, Feed the Future Innovation Lab for Food Security (FSP).
    13. Michael J. Andrews, 2020. "Local Effects of Land Grant Colleges on Agricultural Innovation and Output," NBER Chapters, in: Economics of Research and Innovation in Agriculture, pages 139-175, National Bureau of Economic Research, Inc.
    14. Ogada, Maurice Juma, 2012. "Forest Management Decentralization in Kenya: Effects on Household Farm Forestry Decisions in Kakamega," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126319, International Association of Agricultural Economists.
    15. Kim, Seon-Ae & Westra, John V. & Gillespie, Jeffrey M., 2006. "Factors Influencing the Adoption of Russian Varroa-Resistant Honey Bees," 2006 Annual Meeting, February 5-8, 2006, Orlando, Florida 35311, Southern Agricultural Economics Association.
    16. Burton, Michael P. & Rigby, Dan & Young, Trevor, 2003. "Modelling the adoption of organic horticultural technology in the UK using Duration Analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(1), pages 1-26, March.
    17. Jidong Wu & Ying Li & Ning Li & Peijun Shi, 2018. "Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 17-30, January.
    18. Aude Ridier & Caroline Roussy & Karim Chaib, 2021. "Adoption of crop diversification by specialized grain farmers in south-western France: evidence from a choice-modelling experiment," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(3), pages 265-283, September.
    19. Scherr, Sara J., 1995. "Economic factors in farmer adoption of agroforestry: Patterns observed in Western Kenya," World Development, Elsevier, vol. 23(5), pages 787-804, May.
    20. Marie-Estelle Binet & Lionel Richefort, 2011. "Diffusion of irrigation technologies: the role of mimicking behaviour and public incentives," Applied Economics Letters, Taylor & Francis Journals, vol. 18(1), pages 43-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:335-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.