IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v165y2018icp85-96.html
   My bibliography  Save this article

CROPGRO-Cotton model for determining climate change impacts on yield, water- and N- use efficiencies of cotton in the Dry Savanna of West Africa

Author

Listed:
  • Amouzou, Kokou Adambounou
  • Naab, Jesse B.
  • Lamers, John P.A.
  • Borgemeister, Christian
  • Becker, Mathias
  • Vlek, Paul L.G.

Abstract

Cotton is an important cash crop in many West African countries. Hence, its sustainable production will support the national economies as well as the livelihoods of the farming population alike and in turn help easing wide-spread poverty. However, future climate change may affect the productivity of cotton in West Africa. Therefore, the objectives of this study were to (i) parameterize the Cropping System Model- CROPGRO-Cotton to simulate growth, seed cotton yield, and in-season soil water dynamics and nitrogen (N) uptake, and (ii) apply the model to estimate potential climate change impacts on cotton growth, yields, and water- and N- productivity under different soil-fertility management practices. The CROPGRO-Cotton model was first parameterized and evaluated using datasets collected in three field experiments conducted in 2014 and 2015 in the Dry Savanna of northern Benin, West Africa. The model was next applied to determine long-term responses of cotton to historical (1986–2015) and projected climate (2080–2099) for three Representative Concentration Pathways (RCPs 2.6, 4.5, and 8.5). CROPGRO-Cotton accurately simulated in-season soil water dynamics (nRMSE of 12–27%, d-values of 0.79–0.88), N uptake (nRMSE of 31–44%, d-values of 0.89–0.96), and biomass accrual (nRMSE of 31–46% and d-values of 0.91–0.97), as well as seed cotton yield at harvest (nRMSE of 24–39% and d-value of about 0.81). The model predicted higher seed cotton yield with planting dates in June compared to July. Under the climate change scenario of RCP2.6, CROPGRO-Cotton predicted a decrease in water use efficiency (WUE) by 20% without any soil amendment, and by 4% with an integrated soil-crop management compared to the historical run, but an increase of 2% with a high use of mineral fertilizer. With the RCP4.5 and 8.5 scenarios, the predicted changes in WUE varied between −1% and 17% across the soil fertility management options. CROPGRO-Cotton predicted increases in N-partial factor productivity by 7 to 31%. The N uptake varied between −7% and 46% whilst seed cotton yield varied between −7 and 41%. The findings underlined that the predicted future increases in water and N productivity in cotton will be driven by CO2 fertilization, increases in temperatures as well as rainfall variability, but at the expense of soil fertility leading to soil mining. Yet, even if cotton, unlike some other crops in the region, will likely respond positively to climate change, adequate soil fertility management practices are essential to ensure efficient and sustainable water- and N- use in the expected future.

Suggested Citation

  • Amouzou, Kokou Adambounou & Naab, Jesse B. & Lamers, John P.A. & Borgemeister, Christian & Becker, Mathias & Vlek, Paul L.G., 2018. "CROPGRO-Cotton model for determining climate change impacts on yield, water- and N- use efficiencies of cotton in the Dry Savanna of West Africa," Agricultural Systems, Elsevier, vol. 165(C), pages 85-96.
  • Handle: RePEc:eee:agisys:v:165:y:2018:i:c:p:85-96
    DOI: 10.1016/j.agsy.2018.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17310697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Z. Y. Yuan & Han Y. H. Chen, 2015. "Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes," Nature Climate Change, Nature, vol. 5(5), pages 465-469, May.
    2. Allison Thomson & Katherine Calvin & Steven Smith & G. Kyle & April Volke & Pralit Patel & Sabrina Delgado-Arias & Ben Bond-Lamberty & Marshall Wise & Leon Clarke & James Edmonds, 2011. "RCP4.5: a pathway for stabilization of radiative forcing by 2100," Climatic Change, Springer, vol. 109(1), pages 77-94, November.
    3. Yang, J.M. & Yang, J.Y. & Liu, S. & Hoogenboom, G., 2014. "An evaluation of the statistical methods for testing the performance of crop models with observed data," Agricultural Systems, Elsevier, vol. 127(C), pages 81-89.
    4. Benjamin Sultan & Marthe Bella-Medjo Tsogo & Alexis Berg & Philippe Quirion & Serge Janicot, 2010. "Multi-scales and multi-sites analyses of the role of rainfall in cotton yields in West Africa," Post-Print hal-00715552, HAL.
    5. Baquedano, Felix G. & Sanders, John H. & Vitale, Jeffrey, 2010. "Increasing incomes of Malian cotton farmers: Is elimination of US subsidies the only solution?," Agricultural Systems, Elsevier, vol. 103(7), pages 418-432, September.
    6. Adhikari, Pradip & Ale, Srinivasulu & Bordovsky, James P. & Thorp, Kelly R. & Modala, Naga R. & Rajan, Nithya & Barnes, Edward M., 2016. "Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model," Agricultural Water Management, Elsevier, vol. 164(P2), pages 317-330.
    7. Theriault, Veronique & Tschirley, David L., 2014. "How Institutions Mediate the Impact of Cash Cropping on Food Crop Intensification: An Application to Cotton in Sub-Saharan Africa," World Development, Elsevier, vol. 64(C), pages 298-310.
    8. Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
    9. Jeffrey Vitale & Marc Ouattarra & Gaspard Vognan, 2011. "Enhancing Sustainability of Cotton Production Systems in West Africa: A Summary of Empirical Evidence from Burkina Faso," Sustainability, MDPI, vol. 3(8), pages 1-34, July.
    10. Jeffrey D. Vitale & Hamady Djourra & Aminata Sidibé, 2009. "Estimating the supply response of cotton and cereal crops in smallholder production systems: recent evidence from Mali," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 519-533, September.
    11. Hearn, A. B., 1994. "OZCOT: A simulation model for cotton crop management," Agricultural Systems, Elsevier, vol. 44(3), pages 257-299.
    12. Keywan Riahi & Shilpa Rao & Volker Krey & Cheolhung Cho & Vadim Chirkov & Guenther Fischer & Georg Kindermann & Nebojsa Nakicenovic & Peter Rafaj, 2011. "RCP 8.5—A scenario of comparatively high greenhouse gas emissions," Climatic Change, Springer, vol. 109(1), pages 33-57, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Na & Yao, Ning & Li, Yi & Chen, Junqing & Liu, Deli & Biswas, Asim & Li, Linchao & Wang, Tianxue & Chen, Xinguo, 2021. "A meta-analysis of the possible impact of climate change on global cotton yield based on crop simulation approaches," Agricultural Systems, Elsevier, vol. 193(C).
    2. Marcos Jiménez Martínez & Christine Fürst, 2021. "Simulating the Capacity of Rainfed Food Crop Species to Meet Social Demands in Sudanian Savanna Agro-Ecologies," Land, MDPI, vol. 10(8), pages 1-28, August.
    3. Desheng Wang & Chengkun Wang & Lichao Xu & Tiecheng Bai & Guozheng Yang, 2022. "Simulating Growth and Evaluating the Regional Adaptability of Cotton Fields with Non-Film Mulching in Xinjiang," Agriculture, MDPI, vol. 12(7), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    2. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    3. Emmanuel Tumusiime & B. Wade Brorsen & Jeffrey D. Vitale, 2014. "Vertical integration in West Africa's cotton industry: are parastatals a second best solution?," Agricultural Economics, International Association of Agricultural Economists, vol. 45(S1), pages 129-143, November.
    4. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "The 1000 GtC coal question: Are cases of vastly expanded future coal combustion still plausible?," Energy Economics, Elsevier, vol. 65(C), pages 16-31.
    5. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2014. "Development of a global computable general equilibrium model coupled with detailed energy end-use technology," Applied Energy, Elsevier, vol. 128(C), pages 296-306.
    6. Yan Lu & Haikun Wang & Qin’geng Wang & Yanyan Zhang & Yiyong Yu & Yu Qian, 2017. "Global anthropogenic heat emissions from energy consumption, 1965–2100," Climatic Change, Springer, vol. 145(3), pages 459-468, December.
    7. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    8. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    9. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    10. Dandan Zhao & Hong S. He & Wen J. Wang & Lei Wang & Haibo Du & Kai Liu & Shengwei Zong, 2018. "Predicting Wetland Distribution Changes under Climate Change and Human Activities in a Mid- and High-Latitude Region," Sustainability, MDPI, vol. 10(3), pages 1-14, March.
    11. Kang, Hyunwoo & Sridhar, Venkataramana & Mills, Bradford F. & Hession, W. Cully & Ogejo, Jactone A., 2019. "Economy-wide climate change impacts on green water droughts based on the hydrologic simulations," Agricultural Systems, Elsevier, vol. 171(C), pages 76-88.
    12. Haruka Ohashi & Tomoko Hasegawa & Akiko Hirata & Shinichiro Fujimori & Kiyoshi Takahashi & Ikutaro Tsuyama & Katsuhiro Nakao & Yuji Kominami & Nobuyuki Tanaka & Yasuaki Hijioka & Tetsuya Matsui, 2019. "Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    13. Martínez-Jaramillo, Juan Esteban & van Ackere, Ann & Larsen, Erik, 2023. "Long term impacts of climate change on the transition towards renewables in Switzerland," Energy, Elsevier, vol. 263(PE).
    14. Hem H Dholakia & Vimal Mishra & Amit Garg, 2015. "Predicted Increases in Heat related Mortality under Climate Change in Urban India," Working Papers id:7115, eSocialSciences.
    15. Chen, Yong & Ale, Srinivasulu & Rajan, Nithya & Srinivasan, Raghavan, 2017. "Modeling the effects of land use change from cotton (Gossypium hirsutum L.) to perennial bioenergy grasses on watershed hydrology and water quality under changing climate," Agricultural Water Management, Elsevier, vol. 192(C), pages 198-208.
    16. Yangyang Xu & Jean-François Lamarque & Benjamin M. Sanderson, 2018. "The importance of aerosol scenarios in projections of future heat extremes," Climatic Change, Springer, vol. 146(3), pages 393-406, February.
    17. Favero, Alice & Massetti, Emanuele, 2014. "Trade of woody biomass for electricity generation under climate mitigation policy," Resource and Energy Economics, Elsevier, vol. 36(1), pages 166-190.
    18. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2016. "Towards modeling soil texture-specific sensitivity of wheat yield and water balance to climatic changes," Agricultural Water Management, Elsevier, vol. 177(C), pages 248-263.
    19. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    20. Hong, Eun-Mi & Nam, Won-Ho & Choi, Jin-Yong & Pachepsky, Yakov A., 2016. "Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea," Agricultural Water Management, Elsevier, vol. 165(C), pages 163-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:165:y:2018:i:c:p:85-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.