IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v166y2018icp184-195.html
   My bibliography  Save this article

Short-term buildup of carbon from a low-productivity pastureland to an agrisilviculture system in the Brazilian savannah

Author

Listed:
  • Coser, Thais Rodrigues
  • de Figueiredo, Cícero Célio
  • Jovanovic, Boban
  • Moreira, Túlio Nascimento
  • Leite, Gilberto Gonçalves
  • Cabral Filho, Sergio Lucio Salomon
  • Kato, Eiyti
  • Malaquias, Juaci Vitória
  • Marchão, Robélio Leandro

Abstract

Agrisilviculture systems that combine two or more species with agricultural practices may potentially increase soil organic matter (SOM) quality due to its diversified and large carbon (C) inputs. The implementation of integrated agricultural systems in Brazil has reached over 11 Mha of area and is a promising strategy to revert widespread land degradation and increase ecological intensification for cropping systems. This study aimed to evaluate the transition of a low-productivity pasture to an agrisilviculture system (corn + Gliricidia sepium + Panicum maximum cv. Massai) along a four-year field experiment under a clayey Oxisol on SOM fractions, C stocks and C management index (CMI). A native Cerrado vegetation was used as a reference. Soil samples were collected in four cropping seasons: T0 - under low-productivity pasture, T1, T2, T3 – 2nd, 3rd and 4th years after implementing the integrated production system, respectively. Both mineral associated and total soil organic C (TC) increased from T0 to T3. Accordingly, C from the particulate SOM increased by 476%, 305% and 368% at 0.00–0.10, 0.10–0.20 and 0.20–0.40 m layers, respectively, and was found to be the most sensitive indicator for changes in soil management systems. Surprisingly, inert C increased up to 0.20 m layer from T0 to all the other seasons and represented 21 to 42% of TC. C stocks at the 0.00–0.40 m layer increased from 52.6 Mg ha−1 at T0 to 66.5 Mg ha−1 at T3. The CMI significantly increased from T0 to T3 – reaching CMI of native vegetation (considered CMI = 100%). The no-till agrisilviculture system with the use of Panicum maximum cv. Massai and Gliricidia sepium managed to accomplish the goal of building up soil organic C and increasing SOM quality, thus showing its potential to be used as a sustainable agricultural practice in terms of soil quality improvement and short-term C sequestration.

Suggested Citation

  • Coser, Thais Rodrigues & de Figueiredo, Cícero Célio & Jovanovic, Boban & Moreira, Túlio Nascimento & Leite, Gilberto Gonçalves & Cabral Filho, Sergio Lucio Salomon & Kato, Eiyti & Malaquias, Juaci Vi, 2018. "Short-term buildup of carbon from a low-productivity pastureland to an agrisilviculture system in the Brazilian savannah," Agricultural Systems, Elsevier, vol. 166(C), pages 184-195.
  • Handle: RePEc:eee:agisys:v:166:y:2018:i:c:p:184-195
    DOI: 10.1016/j.agsy.2018.01.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17308995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.01.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Oliveira Silva, Rafael & Barioni, Luis Gustavo & Hall, J. A. Julian & Moretti, Antonio Carlos & Fonseca Veloso, Rui & Alexander, Peter & Crespolini, Mariane & Moran, Dominic, 2017. "Sustainable intensification of Brazilian livestock production through optimized pasture restoration," Agricultural Systems, Elsevier, vol. 153(C), pages 201-211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gori Maia, Alexandre & Eusebio, Gabriela dos Santos & Fasiaben, Maria do Carmo Ramos & Moraes, Andre Steffens & Assad, Eduardo Delgado & Pugliero, Vanessa Silva, 2021. "The economic impacts of the diffusion of agroforestry in Brazil," Land Use Policy, Elsevier, vol. 108(C).
    2. De Oliveira Silva, Rafael & Barioni, Luis Gustavo & Queiroz Pellegrino, Giampaolo & Moran, Dominic, 2018. "The role of agricultural intensification in Brazil's Nationally Determined Contribution on emissions mitigation," Agricultural Systems, Elsevier, vol. 161(C), pages 102-112.
    3. Pontes, Laíse da Silveira & Porfírio-da-Silva, Vanderley & Moletta, José Luiz & Telles, Tiago Santos, 2021. "Long-term profitability of crop-livestock systems, with and without trees," Agricultural Systems, Elsevier, vol. 192(C).
    4. Pedro Luan Ferreira da Silva & Flávio Pereira de Oliveira & Walter Esfrain Pereira & Adriana Ferreira Martins & Camila Costa da Nóbrega & Danillo Dutra Tavares & Igor Gabriel dos Santos Oliveira Bot, 2020. "The Influence of Oxisol Physics Parameters on Dry Matter Production in Grasses of Brachiaria Genus," Journal of Agricultural Studies, Macrothink Institute, vol. 8(2), pages 265-283, June.
    5. Alexandra Sintori & Angelos Liontakis & Irene Tzouramani, 2019. "Assessing the Environmental Efficiency of Greek Dairy Sheep Farms: GHG Emissions and Mitigation Potential," Agriculture, MDPI, vol. 9(2), pages 1-14, February.
    6. Monjardino, Marta & Loi, Angelo & Thomas, Dean T. & Revell, Clinton K. & Flohr, Bonnie M. & Llewellyn, Rick S. & Norman, Hayley C., 2022. "Improved legume pastures increase economic value, resilience and sustainability of crop-livestock systems," Agricultural Systems, Elsevier, vol. 203(C).
    7. Tarik Tanure & Rafael Faria de Abreu Campos & Júlio César Reis & Rayna Benzeev & Peter Newton & Renato Aragão Ribeiro Rodrigues & Ana Maria Hermeto Camilo de Oliveira, 2024. "Farmers’ perceptions of climate change affect their adoption of sustainable agricultural technologies in the Brazilian Amazon and Atlantic Forest biomes," Climatic Change, Springer, vol. 177(1), pages 1-24, January.
    8. Alexandre C. Köberle & Vassilis Daioglou & Pedro Rochedo & André F. P. Lucena & Alexandre Szklo & Shinichiro Fujimori & Thierry Brunelle & Etsushi Kato & Alban Kitous & Detlef P. Vuuren & Roberto Scha, 2022. "Can global models provide insights into regional mitigation strategies? A diagnostic model comparison study of bioenergy in Brazil," Climatic Change, Springer, vol. 170(1), pages 1-31, January.
    9. Bonaudo, Thierry & Piraux, Marc & Gameiro, Augusto Hauber, 2021. "Analysing intensification, autonomy and efficiencies of livestock production through nitrogen flows: A case study of an emblematic Amazonian territory," Agricultural Systems, Elsevier, vol. 190(C).
    10. Otavio Cavalett & Sigurd Norem Slettmo & Francesco Cherubini, 2018. "Energy and Environmental Aspects of Using Eucalyptus from Brazil for Energy and Transportation Services in Europe," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    11. Erasmus K.H.J. Zu Ermgassen & Melquesedek Pereira de Alcântara & Andrew Balmford & Luis Barioni & Francisco Beduschi Neto & Murilo M. F. Bettarello & Genivaldo De Brito & Gabriel C. Carrero & Eduardo , 2018. "Results from On-The-Ground Efforts to Promote Sustainable Cattle Ranching in the Brazilian Amazon," Sustainability, MDPI, vol. 10(4), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:166:y:2018:i:c:p:184-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.