IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v146y2016icp70-79.html
   My bibliography  Save this article

Environmental and economic performance of beef farming systems with different feeding strategies in southern Brazil

Author

Listed:
  • Pashaei Kamali, Farahnaz
  • van der Linden, Aart
  • Meuwissen, Miranda P.M.
  • Malafaia, Guilherme Cunha
  • Oude Lansink, Alfons G.J.M.
  • de Boer, Imke J.M.

Abstract

Beef production is one of the contributors to emission of pollutants to the environment, and increasingly competes for natural resources. Beef producers can improve their environmental performance by adopting alternative feeding strategies. Adoption of alternative feeding strategies, however, might negatively impact farm profitability. The objective of this study was to evaluate the environmental and economic performance of four beef farming systems with different feeding strategies in southern Brazil: grazing on natural pasture (NP); grazing on improved pasture (IP); grazing on natural pasture and crop residues (CR); and grazing on natural pasture and feedlot fattening (FL). Environmental indicators used to compare these farming systems were global warming potential (GWP), fossil energy use, and land occupation per kilogram live weight (LW). Life cycle assessment (LCA) was used to quantify environmental indicators from cradle-to-farm gate. The indicator for economic performance was operating profit per farm. The IP system had lower GWP (18.7kgCO2-eq.·kg−1LW) and land occupation (37m2·kg−1LW) than other systems, whereas its fossil energy use (19.3MJ·kg−1LW) was higher. CR had the highest operating profit (1,567,800R$·farm−1) of the four systems, followed by the IP system (616,400R$·farm−1). Operating profit in the CR system was mainly from crop production (88%). The GWP of the CR system (26.8kgCO2-eq.·kg−1LW) was similar to the GWP of the NP system (27.3kgCO2-eq.·kg−1LW). Operating profit of the FL system (148,100R$·farm−1) was lower than in the NP system (184,400R$·farm−1). The outcomes of this research suggest that IP is a promising system to improve GWP, land occupation, and operating profit, whereas CR has the potential to improve economic performance of whole farms in southern Brazil.

Suggested Citation

  • Pashaei Kamali, Farahnaz & van der Linden, Aart & Meuwissen, Miranda P.M. & Malafaia, Guilherme Cunha & Oude Lansink, Alfons G.J.M. & de Boer, Imke J.M., 2016. "Environmental and economic performance of beef farming systems with different feeding strategies in southern Brazil," Agricultural Systems, Elsevier, vol. 146(C), pages 70-79.
  • Handle: RePEc:eee:agisys:v:146:y:2016:i:c:p:70-79
    DOI: 10.1016/j.agsy.2016.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16300634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2016.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramsey, Ruslyn & Doye, Damona G. & Ward, Clement E. & McGrann, James M. & Falconer, Lawrence L. & Bevers, Stanley J., 2005. "Factors Affecting Beef Cow-Herd Costs, Production, and Profits," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 37(1), pages 1-9, April.
    2. Beauchemin, Karen A. & Henry Janzen, H. & Little, Shannan M. & McAllister, Tim A. & McGinn, Sean M., 2010. "Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study," Agricultural Systems, Elsevier, vol. 103(6), pages 371-379, July.
    3. Vergé, X.P.C. & Dyer, J.A. & Desjardins, R.L. & Worth, D., 2008. "Greenhouse gas emissions from the Canadian beef industry," Agricultural Systems, Elsevier, vol. 98(2), pages 126-134, September.
    4. Pelletier, Nathan & Pirog, Rich & Rasmussen, Rebecca, 2010. "Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States," Agricultural Systems, Elsevier, vol. 103(6), pages 380-389, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dumas, Patrice & Wirsenius, Stefan & Searchinger, Tim & Andrieu, Nadine & Vogt-Schilb, Adrien, 2022. "Options to achieve net-zero emissions from agriculture and land use changes in Latin America and the Caribbean," IDB Publications (Working Papers) 12385, Inter-American Development Bank.
    2. Marques, J.G.O. & de Oliveira Silva, R. & Barioni, L.G. & Hall, J.A.J. & Fossaert, C. & Tedeschi, L.O. & Garcia-Launay, F. & Moran, D., 2022. "Evaluating environmental and economic trade-offs in cattle feed strategies using multiobjective optimization," Agricultural Systems, Elsevier, vol. 195(C).
    3. Elizabeth J. Jacobo & Ulises J. Martínez Ortiz & Santiago M. Cotroneo & Adriana M. Rodríguez, 2024. "Adaptive Grazing of Native Grasslands Provides Ecosystem Services and Reduces Economic Instability for Livestock Systems in the Flooding Pampa, Argentina," Sustainability, MDPI, vol. 16(10), pages 1-16, May.
    4. Epper, C.A. & Paul, B. & Burra, D. & Phengsavanh, P. & Ritzema, R. & Syfongxay, C. & Groot, J.C.J. & Six, J. & Frossard, E. & Oberson, A. & Douxchamps, S., 2020. "Nutrient flows and intensification options for smallholder farmers of the Lao uplands," Agricultural Systems, Elsevier, vol. 177(C).
    5. Patrice Dumas & Stefan Wirsenius & Tim Searchinger & Nadine Andrieu & Adrien Vogt-Schilb, 2022. "Options to achieve net - zero emissions from agriculture and land use changes in Latin America and the Caribbean," Post-Print halshs-03760573, HAL.
    6. Devi Maulida Rahmah & Agusta Samodra Putra & Riaru Ishizaki & Ryozo Noguchi & Tofael Ahamed, 2022. "A Life Cycle Assessment of Organic and Chemical Fertilizers for Coffee Production to Evaluate Sustainability toward the Energy–Environment–Economic Nexus in Indonesia," Sustainability, MDPI, vol. 14(7), pages 1-28, March.
    7. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    8. Pereira, Carolina H. & Patino, Harold O. & Hoshide, Aaron K. & Abreu, Daniel C. & Alan Rotz, C. & Nabinger, Carlos, 2018. "Grazing supplementation and crop diversification benefits for southern Brazil beef: A case study," Agricultural Systems, Elsevier, vol. 162(C), pages 1-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. White, Robin R. & Brady, Michael & Capper, Judith L. & Johnson, Kristen A., 2014. "Optimizing diet and pasture management to improve sustainability of U.S. beef production," Agricultural Systems, Elsevier, vol. 130(C), pages 1-12.
    2. Raymond L. Desjardins & Devon E. Worth & Xavier P. C. Vergé & Dominique Maxime & Jim Dyer & Darrel Cerkowniak, 2012. "Carbon Footprint of Beef Cattle," Sustainability, MDPI, vol. 4(12), pages 1-23, December.
    3. Bradley G. Ridoutt & Peerasak Sanguansri & Gregory S. Harper, 2011. "Comparing Carbon and Water Footprints for Beef Cattle Production in Southern Australia," Sustainability, MDPI, vol. 3(12), pages 1-13, December.
    4. María I. Nieto & Olivia Barrantes & Liliana Privitello & Ramón Reiné, 2018. "Greenhouse Gas Emissions from Beef Grazing Systems in Semi-Arid Rangelands of Central Argentina," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    5. Dyer, James A & Verge, Xavier P. C. & Desjardins, Raymond L. & Worth, Devon E., 2014. "A Comparison of the Greenhouse Gas Emissions From the Sheep Industry With Beef Production in Canada," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 3(3).
    6. Alemu, Aklilu W. & Amiro, Brian D. & Bittman, Shabtai & MacDonald, Douglas & Ominski, Kim H., 2017. "Greenhouse gas emission of Canadian cow-calf operations: A whole-farm assessment of 295 farms," Agricultural Systems, Elsevier, vol. 151(C), pages 73-83.
    7. Alemu, Aklilu W. & Janzen, Henry & Little, Shannan & Hao, Xiying & Thompson, Donald J. & Baron, Vern & Iwaasa, Alan & Beauchemin, Karen A. & Kröbel, Roland, 2017. "Assessment of grazing management on farm greenhouse gas intensity of beef production systems in the Canadian Prairies using life cycle assessment," Agricultural Systems, Elsevier, vol. 158(C), pages 1-13.
    8. Boaitey, Albert & Goddard, Ellen & Mohapatra, Sandeep, 2019. "Environmentally friendly breeding, spatial heterogeneity and effective carbon offset design in beef cattle," Food Policy, Elsevier, vol. 84(C), pages 35-45.
    9. Forte, Annachiara & Zucaro, Amalia & De Vico, Gionata & Fierro, Angelo, 2016. "Carbon footprint of heliciculture: A case study from an Italian experimental farm," Agricultural Systems, Elsevier, vol. 142(C), pages 99-111.
    10. Hünerberg, Martin & Little, Shannan M. & Beauchemin, Karen A. & McGinn, Sean M. & O’Connor, Don & Okine, Erasmus K. & Harstad, Odd M. & Kröbel, Roland & McAllister, Tim A., 2014. "Feeding high concentrations of corn dried distillers’ grains decreases methane, but increases nitrous oxide emissions from beef cattle production," Agricultural Systems, Elsevier, vol. 127(C), pages 19-27.
    11. Oishi, Kazato & Kato, Yohei & Ogino, Akifumi & Hirooka, Hiroyuki, 2013. "Economic and environmental impacts of changes in culling parity of cows and diet composition in Japanese beef cow–calf production systems," Agricultural Systems, Elsevier, vol. 115(C), pages 95-103.
    12. Stanley, Paige L. & Rowntree, Jason E. & Beede, David K. & DeLonge, Marcia S. & Hamm, Michael W., 2018. "Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems," Agricultural Systems, Elsevier, vol. 162(C), pages 249-258.
    13. Castaño-Sánchez, José P. & Rotz, C. Alan & McIntosh, Matthew M. & Tolle, Cindy & Gifford, Craig A. & Duff, Glenn C. & Spiegal, Sheri A., 2023. "Grass finishing of Criollo cattle can provide an environmentally preferred and cost effective meat supply chain from United States drylands," Agricultural Systems, Elsevier, vol. 210(C).
    14. Schaufele, Brandon, 2019. "Demand Shocks Change the Excess Burden From Carbon Taxes," MPRA Paper 92132, University Library of Munich, Germany.
    15. Becona, Gonzalo & Astigarraga, Laura & Picasso, Valentin D., 2014. "Greenhouse Gas Emissions of Beef Cow-Calf Grazing Systems in Uruguay," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 3(2).
    16. Zifei Liu & Yang Liu, 2018. "Mitigation of greenhouse gas emissions from animal production," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(4), pages 627-638, August.
    17. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    18. Modongo, Oteng & Kulshreshtha, Suren N., 2018. "Economics of mitigating greenhouse gas emissions from beef production in western Canada," Agricultural Systems, Elsevier, vol. 162(C), pages 229-238.
    19. Pogue, Sarah J. & Kröbel, Roland & Janzen, H. Henry & Beauchemin, Karen A. & Legesse, Getahun & de Souza, Danielle Maia & Iravani, Majid & Selin, Carrie & Byrne, James & McAllister, Tim A., 2018. "Beef production and ecosystem services in Canada’s prairie provinces: A review," Agricultural Systems, Elsevier, vol. 166(C), pages 152-172.
    20. Morel, Kevin & Farrié, Jean-Pierre & Renon, Julien & Manneville, Vincent & Agabriel, Jacques & Devun, Jean, 2016. "Environmental impacts of cow-calf beef systems with contrasted grassland management and animal production strategies in the Massif Central, France," Agricultural Systems, Elsevier, vol. 144(C), pages 133-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:146:y:2016:i:c:p:70-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.