IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v137y2015icp139-153.html
   My bibliography  Save this article

A comparison of farming practices and performance for wheat production in Haryana, India

Author

Listed:
  • Coventry, D.R.
  • Poswal, R.S.
  • Yadav, Ashok
  • Riar, Amritbir Singh
  • Zhou, Yi
  • Kumar, Anuj
  • Chand, Ramesh
  • Chhokar, R.S.
  • Sharma, R.K.
  • Yadav, V.K.
  • Gupta, R.K.
  • Mehta, Anil
  • Cummins, J.A.

Abstract

An extensive stratified survey was conducted in two different wheat growing seasons in all districts of Haryana (India) to evaluate current agronomic practices and assess performance in wheat production with the purpose of identifying where farmers can make further changes in practices. The survey involved 116 villages (927 farmers) in 2008 and 103 villages (823 farmers) in 2010. Different sized farming operations from each village were surveyed to represent all socio-economic categories of farmers. Agronomic inputs (tillage method, fertilizer practice, variety choice, time of sowing, irrigation, and rotation practice) and yield data are presented as mean data, and individual farmer's information is represented by regression tree (RT) analysis to highlight primary associations between cropping management and wheat yield and the technical efficiency (TE) measure. TE was calculated using the key agronomic variables obtained from the survey, and the farms with the highest TE values were assessed as having the superior ‘best practice’ technology. In the districts where the rice–wheat rotation was adopted, there was an overall higher level of TE. Where rice–wheat rotation is the main cropping practice (for example in Kaithal and Kurukshetra), many of the farmers have adopted zero tillage farming methods, with one third of farmers in Kaithal using zero tillage for planting wheat. In contrast, in Sirsa district where cotton was favoured by the farmers as their monsoon season crop, there were no farms where zero tillage was practised. Also, there was also no zero tillage farming where the pearl millet/cluster bean rotation was used as the monsoon season crop. In most cases farmers use a two applications of nitrogen fertilizer applied post-emergence, particularly in the rice–wheat and cotton–wheat districts. The survey also showed that application of potassium fertilizer and use of zinc is regionally specific and this is consistent with the soil maps that show the potential for deficiency of these nutrients in Haryana districts. Sowing in the rice–wheat districts was mostly at the recommended time in early November. The highest number of irrigations occurred in the districts using the pearl millet–wheat and cluster bean–wheat rotations where sprinkler irrigation is the main application practice. The analysis of TE provides a useful comparison when the 5 different farm size categories are separated. There was no difference in TE with farm size, suggesting the message concerning best practice for wheat production is available to and adopted by farmers irrespective of scale of operation. This analysis highlights where extension messages could be focused, whether for zero tillage in the non-rice districts, management of macro-nutrients, or the targeted use of micronutrients.

Suggested Citation

  • Coventry, D.R. & Poswal, R.S. & Yadav, Ashok & Riar, Amritbir Singh & Zhou, Yi & Kumar, Anuj & Chand, Ramesh & Chhokar, R.S. & Sharma, R.K. & Yadav, V.K. & Gupta, R.K. & Mehta, Anil & Cummins, J.A., 2015. "A comparison of farming practices and performance for wheat production in Haryana, India," Agricultural Systems, Elsevier, vol. 137(C), pages 139-153.
  • Handle: RePEc:eee:agisys:v:137:y:2015:i:c:p:139-153
    DOI: 10.1016/j.agsy.2015.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X15000542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2015.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad, Munir & Boris E., Bravo-Ureta, 1996. "Technical efficiency measures for dairy farms using panel data: a comparison of alternative model specifications," MPRA Paper 37703, University Library of Munich, Germany.
    2. Singh, Surender, 2007. "A Study on Technical Efficiency of Wheat Cultivation in Haryana," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 20(1).
    3. Abdul Wadud & Ben White, 2000. "Farm household efficiency in Bangladesh: a comparison of stochastic frontier and DEA methods," Applied Economics, Taylor & Francis Journals, vol. 32(13), pages 1665-1673.
    4. Thiam, Abdourahmane & Bravo-Ureta, Boris E. & Rivas, Teodoro E., 2001. "Technical efficiency in developing country agriculture: a meta-analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 235-243, September.
    5. Goyal, S.K. & Suhag, K.S., 2003. "Estimation of Technical Efficiency on Wheat Farms in Northern India - A Panel Data Analysis," 14th Congress, Perth, Western Australia, August 10-15, 2003 24305, International Farm Management Association.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kapoor, Rajni & Das, Nimai, 2021. "A Pragmatic Study for Enhancing Agricultural Efficiency Through Labor Freedom," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 11(04), January.
    2. Seraina Vonzun & Monika M. Messmer & Thomas Boller & Yogendra Shrivas & Shreekant S. Patil & Amritbir Riar, 2019. "Extent of Bollworm and Sucking Pest Damage on Modern and Traditional Cotton Species and Potential for Breeding in Organic Cotton," Sustainability, MDPI, vol. 11(22), pages 1-12, November.
    3. Alwin Keil & Alwin D’souza & Andrew McDonald, 2017. "Zero-tillage is a proven technology for sustainable wheat intensification in the Eastern Indo-Gangetic Plains: what determines farmer awareness and adoption?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(4), pages 723-743, August.
    4. Amritbir Riar & Lokendra S. Mandloi & Ramadas Sendhil & Randhir S. Poswal & Monika M. Messmer & Gurbir S. Bhullar, 2020. "Technical Efficiencies and Yield Variability Are Comparable Across Organic and Conventional Farms," Sustainability, MDPI, vol. 12(10), pages 1-12, May.
    5. Paudel, G. & Krishna, V. & McDonald, A., 2018. "Why some inferior technologies succeed? Examining the diffusion and impacts of rotavator tillage in Nepal Terai," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277149, International Association of Agricultural Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phu Nguyen-Van & Nguyen To-The, 2016. "Technical efficiency and agricultural policy: evidence from the teaproduction in Vietnam," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 97(3), pages 173-184.
    2. Álvaro Ramírez Suárez, 2013. "Análisis de eficiencia económica de fincas arroceras: una aplicación de una función determinística de ingresos brutos frontera," Revista Lebret, Universidad Santo Tomás - Bucaramanga, vol. 5, pages 213-240, December.
    3. Álvaro Ramírez Suárez, 2013. "Análisis de eficiencia económica de fincas arroceras: una aplicación de una función determinística de ingresos brutos frontera," Revista Lebret, Universidad Santo Tomás - Bucaramanga, vol. 5, pages 213-240, December.
    4. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    5. Kelvin Balcombe & Iain Fraser & Laure Latruffe & Mizanur Rahman & Laurence Smith, 2008. "An application of the DEA double bootstrap to examine sources of efficiency in Bangladesh rice farming," Applied Economics, Taylor & Francis Journals, vol. 40(15), pages 1919-1925.
    6. Speelman, Stijn & D'Haese, Marijke F.C. & Buysse, Jeroen & D'Haese, Luc, 2007. "Technical efficiency of water use and its determinants, study at efficiencies in small-scale irrigation schemes in North-West Province, South Africa," 106th Seminar, October 25-27, 2007, Montpellier, France 7904, European Association of Agricultural Economists.
    7. Abatania, Luke N. & Hailu, Atakelty & Mugera, Amin W., 2012. "Analysis of farm household technical efficiency in Northern Ghana using bootstrap DEA," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 124211, Australian Agricultural and Resource Economics Society.
    8. Speelman, Stijn & D'Haese, Marijke & Buysse, Jeroen & D'Haese, Luc, 2008. "A measure for the efficiency of water use and its determinants, a case study of small-scale irrigation schemes in North-West Province, South Africa," Agricultural Systems, Elsevier, vol. 98(1), pages 31-39, July.
    9. Hai-Dang Nguyen & Thanh Ngo & Tu DQ Le & Huong Ho & Hai T.H. Nguyen, 2019. "The Role of Knowledge in Sustainable Agriculture: Evidence from Rice Farms’ Technical Efficiency in Hanoi, Vietnam," Sustainability, MDPI, vol. 11(9), pages 1-10, April.
    10. Solis, Daniel & Bravo-Ureta, Boris E. & Quiroga, Ricardo E., 2006. "The Effect Of Soil Conservation On Technical Efficiency: Evidence From Central America," 2006 Annual meeting, July 23-26, Long Beach, CA 21345, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Nguyen To The & Anh Nguyen Tuan, 2019. "Efficiency and adoption of organic tea production: Evidence from Vi Xuyen district, Ha Giang province, Vietnam," Asia-Pacific Journal of Regional Science, Springer, vol. 3(1), pages 201-217, February.
    12. Belloumi, Mounir & Matoussi, Mohamed Salah, 2006. "A Stochastic Frontier Approach for Measuring Technical Efficiencies of Date Farms in Southern Tunisia," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 35(2), pages 1-14, October.
    13. Muhammad Arif Watto & Amin W. Mugera, 2014. "Measuring Production and Irrigation Efficiencies of Rice Farms: Evidence from the Punjab Province, Pakistan," Asian Economic Journal, East Asian Economic Association, vol. 28(3), pages 301-322, September.
    14. Owusu, Eric S. & Bravo-Ureta, Boris E., 2022. "Reap when you sow? The productivity impacts of early sowing in Malawi," Agricultural Systems, Elsevier, vol. 199(C).
    15. Jara-Rojas, Roberto & Bravo-Ureta, Boris E. & Moreira, Victor H. & Diaz, Jose, 2012. "Natural Resource Conservation and Technical Efficiency from Small-scale Farmers in Central Chile," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126227, International Association of Agricultural Economists.
    16. Abdul Wadud, 2013. "Impact of Microcredit on Agricultural Farm Performance and Food Security in Bangladesh," Working Papers 14, Institute of Microfinance (InM).
    17. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    18. Olga Murova & Benaissa Chidmi, 2013. "Technical efficiency of US dairy farms and federal government programs," Applied Economics, Taylor & Francis Journals, vol. 45(7), pages 839-847, March.
    19. Frija, Aymen & Chebil, Ali & Speelman, Stijn & Buysse, Jeroen & Van Huylenbroeck, Guido, 2009. "Water use and technical efficiencies in horticultural greenhouses in Tunisia," Agricultural Water Management, Elsevier, vol. 96(11), pages 1509-1516, November.
    20. Watto, Muhammad, 2013. "Measuring Groundwater Irrigation Efficiency in Pakistan: A DEA Approach Using the Sub-vector and Slack-based Models," 2013 Conference (57th), February 5-8, 2013, Sydney, Australia 152204, Australian Agricultural and Resource Economics Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:137:y:2015:i:c:p:139-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.