IDEAS home Printed from https://ideas.repec.org/a/ecr/col070/11604.html
   My bibliography  Save this article

The biodiesel market and public policy: a comparative analysis of Argentina and Brazil

Author

Listed:
  • Flexor, Georges Gérard
  • Kato, Karina Yoshie Martins
  • Recalde, Marína Yesica

Abstract

This article presents a comparative case study of the institutional aspects of policymaking and the impacts that this has had on the development of the biodiesel market in Argentina and Brazil. The study draws upon an analysis of the policymaking process and, based on the available statistical evidence, discusses how this has influenced the market's development. Its findings underscore the differences between the two countries' policy objectives. In Argentina, issues relating to the supply of petrodiesel have been a crucial factor, whereas, in Brazil, the promotion of family farming has been a major objective. In Brazil, Petrobras has played a significant role, but some of the country's policy objectives in this area have not been fully met. In Argentina, the external market continues to be the driving force behind this industry.

Suggested Citation

  • Flexor, Georges Gérard & Kato, Karina Yoshie Martins & Recalde, Marína Yesica, 2012. "The biodiesel market and public policy: a comparative analysis of Argentina and Brazil," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), December.
  • Handle: RePEc:ecr:col070:11604
    Note: Includes bibliography
    as

    Download full text from publisher

    File URL: http://repositorio.cepal.org/handle/11362/11604
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timilsina, Govinda R. & Shrestha, Ashish, 2011. "How much hope should we have for biofuels?," Energy, Elsevier, vol. 36(4), pages 2055-2069.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    2. Tsita, Katerina G. & Pilavachi, Petros A., 2012. "Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process," Energy Policy, Elsevier, vol. 48(C), pages 677-686.
    3. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    4. Poder, Thomas G. & He, Jie, 2017. "Willingness to pay for a cleaner car: The case of car pollution in Quebec and France," Energy, Elsevier, vol. 130(C), pages 48-54.
    5. Polprasert, Chongchin & Patthanaissaranukool, Withida & Englande, Andrew J., 2015. "A choice between RBD (refined, bleached, and deodorized) palm olein and palm methyl ester productions from carbon movement categorization," Energy, Elsevier, vol. 88(C), pages 610-620.
    6. Acheampong, Michael & Ertem, Funda Cansu & Kappler, Benjamin & Neubauer, Peter, 2017. "In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 927-937.
    7. Debnath, Deepayan & Whistance, Jarrett & Thompson, Wyatt, 2017. "The causes of two-way U.S.–Brazil ethanol trade and the consequences for greenhouse gas emission," Energy, Elsevier, vol. 141(C), pages 2045-2053.
    8. Schneider, T. & Graeff-Hönninger, S. & French, W.T. & Hernandez, R. & Merkt, N. & Claupein, W. & Hetrick, M. & Pham, P., 2013. "Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents," Energy, Elsevier, vol. 61(C), pages 34-43.
    9. Ribeiro, Barbara Esteves, 2013. "Beyond commonplace biofuels: Social aspects of ethanol," Energy Policy, Elsevier, vol. 57(C), pages 355-362.
    10. Heyne, Stefan & Harvey, Simon, 2013. "Assessment of the energy and economic performance of second generation biofuel production processes using energy market scenarios," Applied Energy, Elsevier, vol. 101(C), pages 203-212.
    11. Moschini, GianCarlo & Cui, Jingbo & Lapan, Harvey E., 2012. "Economics of Biofuels: An Overview of Policies, Impacts and Prospects," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(3), pages 1-28, December.
    12. Nonhebel, Sanderine, 2012. "Global food supply and the impacts of increased use of biofuels," Energy, Elsevier, vol. 37(1), pages 115-121.
    13. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    14. Duarte, Alexandra E. & Sarache, William A. & Costa, Yasel J., 2014. "A facility-location model for biofuel plants: Applications in the Colombian context," Energy, Elsevier, vol. 72(C), pages 476-483.
    15. Ge, Jianping & Lei, Yalin & Tokunaga, Suminori, 2014. "Non-grain fuel ethanol expansion and its effects on food security: A computable general equilibrium analysis for China," Energy, Elsevier, vol. 65(C), pages 346-356.
    16. Kou, Nannan & Zhao, Fu, 2011. "Techno-economical analysis of a thermo-chemical biofuel plant with feedstock and product flexibility under external disturbances," Energy, Elsevier, vol. 36(12), pages 6745-6752.
    17. Mahmoud, A. & Shuhaimi, M., 2013. "Systematic methodology for optimal enterprise network design between bio-refinery and petroleum refinery for the production of transportation fuels," Energy, Elsevier, vol. 59(C), pages 224-232.
    18. Soares Dias, Ana Paula & Bernardo, Joana & Felizardo, Pedro & Neiva Correia, Maria Joana, 2012. "Biodiesel production over thermal activated cerium modified Mg-Al hydrotalcites," Energy, Elsevier, vol. 41(1), pages 344-353.
    19. Timilsina, Govinda R., 2015. "Oil prices and the global economy: A general equilibrium analysis," Energy Economics, Elsevier, vol. 49(C), pages 669-675.
    20. Malça, João & Freire, Fausto, 2012. "Addressing land use change and uncertainty in the life-cycle assessment of wheat-based bioethanol," Energy, Elsevier, vol. 45(1), pages 519-527.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecr:col070:11604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Biblioteca CEPAL (email available below). General contact details of provider: https://edirc.repec.org/data/eclaccl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.