IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2018-03-19.html
   My bibliography  Save this article

Application of GARCH Model to Forecast Data and Volatility of Share Price of Energy (Study on Adaro Energy Tbk, LQ45)

Author

Listed:
  • Erica Virginia

    (Department of Accounting, President University, Cikarang-Bekasi, Indonesia)

  • Josep Ginting

    (Department of Accounting, President University, Cikarang-Bekasi, Indonesia,)

  • Faiz A.M. Elfaki

    (Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Qatar.)

Abstract

Most of the times, Economic and Financial data not only become highly volatile but also show heterogeneous variances (heteroscedasticity). The common method of the Box Jenkins cannot be used for data modeling as the method has an effect of heteroscedasticity (ARCH effects). One of the usable methods to overcome the effect of heteroscedasticity is GARCH model. The aim of this study is to find the best model to estimate the parameters, to predict the share price, and to forecast the volatility of data share price of Adaro Energy Tbk, Indonesia, from January 2014 to December 2016. The study also discuss the Window Dressing. The best model which fits the data is identified as AR(1)-GARCH (1,1). The application of this best model for forecasting the share price of Adaro Energy Tbk, Indonesia, for the next 30 days showed very promising results and the Mean Absolute Percentage Error (MAPE) was determined as 2.16%.

Suggested Citation

  • Erica Virginia & Josep Ginting & Faiz A.M. Elfaki, 2018. "Application of GARCH Model to Forecast Data and Volatility of Share Price of Energy (Study on Adaro Energy Tbk, LQ45)," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 131-140.
  • Handle: RePEc:eco:journ2:2018-03-19
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/6352/3702
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/6352/3702
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9781107034662 is not listed on IDEAS
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Chan, Kalok & Fong, Wai-Ming, 2000. "Trade size, order imbalance, and the volatility-volume relation," Journal of Financial Economics, Elsevier, vol. 57(2), pages 247-273, August.
    4. Chia Chun Lo & Konstantinos Skindilias & Andreas Karathanasopoulos, 2016. "Forecasting Latent Volatility through a Markov Chain Approximation Filter," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(1), pages 54-69, January.
    5. Brooks,Chris, 2014. "Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9781107661455, December.
    6. Beaver, William & Lambert, Richard & Morse, Dale, 1980. "The information content of security prices," Journal of Accounting and Economics, Elsevier, vol. 2(1), pages 3-28, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tayebeh Sadat Tabatabaei & Pedram Asef, 2021. "Evaluation of Energy Price Liberalization in Electricity Industry: A Data-Driven Study on Energy Economics," Energies, MDPI, vol. 14(22), pages 1-19, November.
    2. Ambya Ambya & Toto Gunarto & Ernie Hendrawaty & Fajrin Satria Dwi Kesumah & Febryan Kusuma Wisnu, 2020. "Future Natural Gas Price Forecasting Model and Its Policy Implication," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 64-70.
    3. Yee-Fan Tan & Lee-Yeng Ong & Meng-Chew Leow & Yee-Xian Goh, 2021. "Exploring Time-Series Forecasting Models for Dynamic Pricing in Digital Signage Advertising," Future Internet, MDPI, vol. 13(10), pages 1-24, September.
    4. Mustofa Usman & M. Komarudin & Munti Sarida & Wamiliana Wamiliana & Edwin Russel & Mahatma Kufepaksi & Iskandar Ali Alam & Faiz A.M. Elfaki, 2022. "Analysis of Some Variable Energy Companies by Using VAR(p)-GARCH(r,s) Model : Study From Energy Companies of Qatar over the Years 2015 2022," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 178-191, September.
    5. Suripto & Supriyanto, 2021. "The Effect of the COVID-19 Pandemic on Stock Prices with the Event Window Approach: A Case Study of State Gas Companies, in the Energy Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 155-162.
    6. Mustofa Usman & Luvita Loves & Edwin Russel & Muslim Ansori & Warsono Warsono & Widiarti Widiarti & Wamiliana Wamiliana, 2022. "Analysis of Some Energy and Economics Variables by Using VECMX Model in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 91-102, March.
    7. Toto Gunarto & Rialdi Azhar & Novita Tresiana & Supriyanto Supriyanto & Ayi Ahadiat, 2020. "Accurate Estimated Model of Volatility Crude Oil Price," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 228-233.
    8. Emma Viviani & Luca Di Persio & Matthias Ehrhardt, 2021. "Energy Markets Forecasting. From Inferential Statistics to Machine Learning: The German Case," Energies, MDPI, vol. 14(2), pages 1-33, January.
    9. Rialdi Azhar & Fajrin Satria Dwi Kesumah & Ambya Ambya & Febryan Kusuma Wisnu & Edwin Russel, 2020. "Application of Short-term Forecasting Models for Energy Entity Stock Price (Study on Indika Energi Tbk, JII)," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 294-301.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suripto & Supriyanto, 2021. "The Effect of the COVID-19 Pandemic on Stock Prices with the Event Window Approach: A Case Study of State Gas Companies, in the Energy Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 155-162.
    2. Pierre J. Venter & Eben Maré, 2020. "GARCH Generated Volatility Indices of Bitcoin and CRIX," JRFM, MDPI, vol. 13(6), pages 1-15, June.
    3. Shi Chen & Cathy Yi-Hsuan Chen & Wolfgang Karl Hardle, 2020. "A first econometric analysis of the CRIX family," Papers 2009.12129, arXiv.org.
    4. Guimaraes, Jonathan S. & Cruz, Jose Cesar, 2017. "Future volatility forecast in agricultural commodity markets," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258480, Agricultural and Applied Economics Association.
    5. Curtis Nybo, 2021. "Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks," Papers 2110.09489, arXiv.org.
    6. Parminder Kaur & Ravi Singla, 2022. "Modelling and forecasting Nifty 50 using hybrid ARIMA-GARCH Model," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 14(1), pages 7-20, June.
    7. Ho, Kin-Yip & Zheng, Lin & Zhang, Zhaoyong, 2012. "Volume, volatility and information linkages in the stock and option markets," Review of Financial Economics, Elsevier, vol. 21(4), pages 168-174.
    8. Yeguang Chi & Wenyan Hao & Yifei Zhang, 2022. "Volatility model applications in China's SSE50 options market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(9), pages 1704-1720, September.
    9. Rama K. Malladi & Prakash L. Dheeriya, 2021. "Time series analysis of Cryptocurrency returns and volatilities," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 45(1), pages 75-94, January.
    10. Noura Abu Asab, 2017. "Asymmetric Oil Price Shocks and Economic Activity in Developing Oil-importing Economies: The Case of Jordan," International Journal of Economics and Financial Issues, Econjournals, vol. 7(2), pages 118-124.
    11. Pavel Ciaian & d'Artis Kancs & Miroslava Rajcaniova, 2018. "The Price of BitCoin: GARCH Evidence from High Frequency Data," EERI Research Paper Series EERI RP 2018/14, Economics and Econometrics Research Institute (EERI), Brussels.
    12. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.
    13. Yavas, Burhan F. & Dedi, Lidija, 2016. "An investigation of return and volatility linkages among equity markets: A study of selected European and emerging countries," Research in International Business and Finance, Elsevier, vol. 37(C), pages 583-596.
    14. Naveen Musunuru, 2019. "Modeling Long Range Dependence in Wheat Food Price Returns," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 11(9), pages 1-46, September.
    15. repec:hum:wpaper:sfb649dp2016-031 is not listed on IDEAS
    16. Chi, Yeguang & Hao, Wenyan, 2021. "Volatility models for cryptocurrencies and applications in the options market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    17. Fatih GÜZEL & Melek ACAR, 2021. "The effects of epidemics on capital markets volatility: A case study of Borsa Istanbul," CES Working Papers, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13(1), pages 50-70, May.
    18. Lidija Dedi & Burhan F. Yavas, 2016. "Return and volatility spillovers in equity markets: An investigation using various GARCH methodologies," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1266788-126, December.
    19. Eyden Samunderu & Yvonne T. Murahwa, 2021. "Return Based Risk Measures for Non-Normally Distributed Returns: An Alternative Modelling Approach," JRFM, MDPI, vol. 14(11), pages 1-48, November.
    20. Patricia Fraser & David Power, 1997. "Stock return volatility and information: an empirical analysis of Pacific Rim, UK and US equity markets," Applied Financial Economics, Taylor & Francis Journals, vol. 7(3), pages 241-253.
    21. Markus Vogl, 2022. "Quantitative modelling frontiers: a literature review on the evolution in financial and risk modelling after the financial crisis (2008–2019)," SN Business & Economics, Springer, vol. 2(12), pages 1-69, December.

    More about this item

    Keywords

    Volatility; heteroscedasticity; ARCH effect; GARCH model; Window Dressing;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2018-03-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.