IDEAS home Printed from https://ideas.repec.org/a/eco/journ1/2017-03-80.html
   My bibliography  Save this article

A Hybrid Model for Portfolio Optimization Based on Stock Clustering and Different Investment Strategies

Author

Listed:
  • Siamak Goudarzi

    (Department of Information Technology, University of Qom, Qom, Iran,)

  • Mohammad Javad Jafari

    (Department of Information Technology, University of Qom, Qom, Iran,)

  • Amir Afsar

    (Department of Industrial Management, Tarbiat Modares University, Tehran, Iran.)

Abstract

In today's dynamic business environment, in order to compete in the market, financial institutes are trying to find the best portfolio policy that in turn leads to an increase in the return and a decrease in the risk for the investors. The objective of this study is to develop a portfolio considering the behavior of investors in risk taking. This research aims to support investors, experts and intermediate managers in establishing optimized portfolio of stocks according to investment strategy. The proposed model has used the five indexes of risk, return, skewness, liquidity and current ratio of 66 companies that enlisted in Tehran stock exchange market and then clustered different companies using the hybrid method of clustering algorithm. After that, the clusters ranked using Topsis method. Ultimately, using genetic algorithm, the portfolio is established for different classes of investors with respect to their risk-taking level. The results show that the proposed model in comparison to general index, the industry index and the index of 50 more active companies are better in Tehran stock exchange.

Suggested Citation

  • Siamak Goudarzi & Mohammad Javad Jafari & Amir Afsar, 2017. "A Hybrid Model for Portfolio Optimization Based on Stock Clustering and Different Investment Strategies," International Journal of Economics and Financial Issues, Econjournals, vol. 7(3), pages 602-608.
  • Handle: RePEc:eco:journ1:2017-03-80
    as

    Download full text from publisher

    File URL: http://www.econjournals.com/index.php/ijefi/article/download/4758/pdf
    Download Restriction: no

    File URL: http://www.econjournals.com/index.php/ijefi/article/view/4758/pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wilford, D. Sykes, 2012. "True Markowitz or assumptions we break and why it matters," Review of Financial Economics, Elsevier, vol. 21(3), pages 93-101.
    2. Li, Xiang & Qin, Zhongfeng & Kar, Samarjit, 2010. "Mean-variance-skewness model for portfolio selection with fuzzy returns," European Journal of Operational Research, Elsevier, vol. 202(1), pages 239-247, April.
    3. Joro, Tarja & Na, Paul, 2006. "Portfolio performance evaluation in a mean-variance-skewness framework," European Journal of Operational Research, Elsevier, vol. 175(1), pages 446-461, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hidetoshi Ito & Akane Murakami & Nixon Dutta & Yukari Shirota & Basabi Chakraborty, 2021. "Clustering of ETF Data for Portfolio Selection during Early Period of Corona Virus Outbreak," Gakushuin Economic Papers, Gakushuin University, Faculty of Economics, vol. 58(1), pages 99-114.
    2. Han Yang & Ming-hui Wang & Nan-jing Huang, 2021. "The $$\alpha$$ α -Tail Distance with an Application to Portfolio Optimization Under Different Market Conditions," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1195-1224, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    2. Briec, Walter & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2013. "Portfolio selection with skewness: A comparison of methods and a generalized one fund result," European Journal of Operational Research, Elsevier, vol. 230(2), pages 412-421.
    3. Yu, Jing-Rung & Lee, Wen-Yi, 2011. "Portfolio rebalancing model using multiple criteria," European Journal of Operational Research, Elsevier, vol. 209(2), pages 166-175, March.
    4. Valeria V. Lakshina, 2019. "Do Portfolio Investors Need To Consider The Asymmetry Of Returns On The Russian Stock Market?," HSE Working papers WP BRP 75/FE/2019, National Research University Higher School of Economics.
    5. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Efficient skewness/semivariance portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 17(5), pages 331-346, September.
    6. Kerstens, Kristiaan & Mounir, Amine & Van de Woestyne, Ignace, 2011. "Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function," European Journal of Operational Research, Elsevier, vol. 210(1), pages 81-94, April.
    7. Walter Briec & Kristiaan Kerstens & Octave Jokung, 2007. "Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach," Management Science, INFORMS, vol. 53(1), pages 135-149, January.
    8. Mohamed El Hedi Arouri & Christophe Rault & Ana Maria Sova & Robert Sova & Frédéric Teulon, 2013. "Market Structure and the Cost of Capital," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00798048, HAL.
    9. Ruiyue Lin & Zhiping Chen & Qianhui Hu & Zongxin Li, 2017. "Dynamic network DEA approach with diversification to multi-period performance evaluation of funds," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 821-860, July.
    10. Lakshina, Valeriya, 2020. "Do portfolio investors need to consider the asymmetry of returns on the Russian stock market?," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    11. Briec, Walter & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2011. "Portfolio Selection with Skewness: A Comparison and a Generalized Two Fund Separation Result," Working Papers 2011/09, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    12. Benita, Francisco & López-Ramos, Francisco & Nasini, Stefano, 2019. "A bi-level programming approach for global investment strategies with financial intermediation," European Journal of Operational Research, Elsevier, vol. 274(1), pages 375-390.
    13. Mats Wilhelmsson & Jianyu Zhao, 2018. "Risk Assessment of Housing Market Segments: The Lender’s Perspective," JRFM, MDPI, vol. 11(4), pages 1-22, October.
    14. Rossello, Damiano, 2015. "Ranking of investment funds: Acceptability versus robustness," European Journal of Operational Research, Elsevier, vol. 245(3), pages 828-836.
    15. Xiaoxia Huang & Xuting Wang, 2019. "Portfolio Investment with Options Based on Uncertainty Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 929-952, May.
    16. El Hedi Arouri, Mohamed & Rault, Christophe & Sova, Anamaria & Sova, Robert & Teulon, Frédéric, 2013. "Market structure and the cost of capital," Economic Modelling, Elsevier, vol. 31(C), pages 664-671.
    17. Wei Chen & Yuxi Gai & Pankaj Gupta, 2018. "Efficiency evaluation of fuzzy portfolio in different risk measures via DEA," Annals of Operations Research, Springer, vol. 269(1), pages 103-127, October.
    18. Abdelouahed Hamdi & Arezou Karimi & Farshid Mehrdoust & Samir Brahim Belhaouari, 2022. "Portfolio Selection Problem Using CVaR Risk Measures Equipped with DEA, PSO, and ICA Algorithms," Mathematics, MDPI, vol. 10(15), pages 1-26, August.
    19. Tsolas, Ioannis E., 2014. "Precious metal mutual fund performance appraisal using DEA modeling," Resources Policy, Elsevier, vol. 39(C), pages 54-60.
    20. Akhilesh KUMAR & Mohammad SHAHID, 2021. "Portfolio selection problem: Issues, challenges and future prospectus," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(4(629), W), pages 71-90, Winter.

    More about this item

    Keywords

    Portfolio Optimization; Clustering; Neural Network; Genetic Algorithm;
    All these keywords.

    JEL classification:

    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ1:2017-03-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.